MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfili Structured version   Visualization version   GIF version

Theorem cfili 22974
Description: Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfili ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝑅,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧

Proof of Theorem cfili
Dummy variables 𝑓 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cfil 22961 . . . . . . . 8 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
21dmmptss 5590 . . . . . . 7 dom CauFil ⊆ ran ∞Met
3 elfvdm 6177 . . . . . . 7 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ dom CauFil)
42, 3sseldi 3581 . . . . . 6 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ran ∞Met)
5 xmetunirn 22052 . . . . . 6 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
64, 5sylib 208 . . . . 5 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
7 iscfil2 22972 . . . . 5 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)))
86, 7syl 17 . . . 4 (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)))
98ibi 256 . . 3 (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟))
109simprd 479 . 2 (𝐹 ∈ (CauFil‘𝐷) → ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)
11 breq2 4617 . . . . 5 (𝑟 = 𝑅 → ((𝑦𝐷𝑧) < 𝑟 ↔ (𝑦𝐷𝑧) < 𝑅))
12112ralbidv 2983 . . . 4 (𝑟 = 𝑅 → (∀𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟 ↔ ∀𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅))
1312rexbidv 3045 . . 3 (𝑟 = 𝑅 → (∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟 ↔ ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅))
1413rspccva 3294 . 2 ((∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
1510, 14sylan 488 1 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  {crab 2911  wss 3555   cuni 4402   class class class wbr 4613   × cxp 5072  dom cdm 5074  ran crn 5075  cima 5077  cfv 5847  (class class class)co 6604  0cc0 9880   < clt 10018  +crp 11776  [,)cico 12119  ∞Metcxmt 19650  Filcfil 21559  CauFilccfil 22958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-2 11023  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12123  df-xmet 19658  df-fbas 19662  df-fil 21560  df-cfil 22961
This theorem is referenced by:  cfil3i  22975  fgcfil  22977  iscmet3  22999  cfilres  23002
  Copyright terms: Public domain W3C validator