Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmppcmp Structured version   Visualization version   GIF version

Theorem cmppcmp 31122
Description: Every compact space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
cmppcmp (𝐽 ∈ Comp → 𝐽 ∈ Paracomp)

Proof of Theorem cmppcmp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmptop 22003 . 2 (𝐽 ∈ Comp → 𝐽 ∈ Top)
2 cmpcref 31114 . . . . . 6 Comp = CovHasRefFin
32eleq2i 2904 . . . . 5 (𝐽 ∈ Comp ↔ 𝐽 ∈ CovHasRefFin)
4 eqid 2821 . . . . . 6 𝐽 = 𝐽
54iscref 31108 . . . . 5 (𝐽 ∈ CovHasRefFin ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦)))
63, 5bitri 277 . . . 4 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦)))
76simprbi 499 . . 3 (𝐽 ∈ Comp → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦))
8 simprl 769 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (𝒫 𝐽 ∩ Fin))
9 elin 4169 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝐽𝑧 ∈ Fin))
108, 9sylib 220 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → (𝑧 ∈ 𝒫 𝐽𝑧 ∈ Fin))
1110simpld 497 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ 𝒫 𝐽)
121ad3antrrr 728 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 ∈ Top)
1310simprd 498 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ Fin)
14 simplr 767 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 = 𝑦)
15 simprr 771 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧Ref𝑦)
16 eqid 2821 . . . . . . . . . . . . . 14 𝑧 = 𝑧
17 eqid 2821 . . . . . . . . . . . . . 14 𝑦 = 𝑦
1816, 17refbas 22118 . . . . . . . . . . . . 13 (𝑧Ref𝑦 𝑦 = 𝑧)
1915, 18syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑦 = 𝑧)
2014, 19eqtrd 2856 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 = 𝑧)
214, 16finlocfin 22128 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑧 ∈ Fin ∧ 𝐽 = 𝑧) → 𝑧 ∈ (LocFin‘𝐽))
2212, 13, 20, 21syl3anc 1367 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (LocFin‘𝐽))
2311, 22elind 4171 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)))
2423, 15jca 514 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → (𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑧Ref𝑦))
2524ex 415 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) → ((𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦) → (𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑧Ref𝑦)))
2625reximdv2 3271 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦))
2726ex 415 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑦 → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
2827a2d 29 . . . 4 ((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) → (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
2928ralimdva 3177 . . 3 (𝐽 ∈ Comp → (∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦) → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
307, 29mpd 15 . 2 (𝐽 ∈ Comp → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦))
31 ispcmp 31121 . . 3 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
324iscref 31108 . . 3 (𝐽 ∈ CovHasRef(LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
3331, 32bitri 277 . 2 (𝐽 ∈ Paracomp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
341, 30, 33sylanbrc 585 1 (𝐽 ∈ Comp → 𝐽 ∈ Paracomp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  cin 3935  𝒫 cpw 4539   cuni 4838   class class class wbr 5066  cfv 6355  Fincfn 8509  Topctop 21501  Compccmp 21994  Refcref 22110  LocFinclocfin 22112  CovHasRefccref 31106  Paracompcpcmp 31119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-reg 9056  ax-inf2 9104  ax-ac2 9885
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-fin 8513  df-r1 9193  df-rank 9194  df-card 9368  df-ac 9542  df-top 21502  df-cmp 21995  df-ref 22113  df-locfin 22115  df-cref 31107  df-pcmp 31120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator