MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnf2 Structured version   Visualization version   GIF version

Theorem cnf2 21857
Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)

Proof of Theorem cnf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscn 21843 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
21simprbda 501 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
323impa 1106 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114  wral 3138  ccnv 5554  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  TopOnctopon 21518   Cn ccn 21832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-top 21502  df-topon 21519  df-cn 21835
This theorem is referenced by:  iscncl  21877  cncls2  21881  cncls  21882  cnntr  21883  cnrest2  21894  cnrest2r  21895  ptcn  22235  txdis1cn  22243  lmcn2  22257  cnmpt11  22271  cnmpt1t  22273  cnmpt12  22275  cnmpt21  22279  cnmpt2t  22281  cnmpt22  22282  cnmpt22f  22283  cnmptcom  22286  cnmptkp  22288  cnmptk1  22289  cnmpt1k  22290  cnmptkk  22291  cnmptk1p  22293  cnmptk2  22294  cnmpt2k  22296  qtopss  22323  qtopeu  22324  qtopomap  22326  qtopcmap  22327  hmeof1o2  22371  xpstopnlem1  22417  xkocnv  22422  xkohmeo  22423  qtophmeo  22425  cnmpt1plusg  22695  cnmpt2plusg  22696  tsmsmhm  22754  cnmpt1vsca  22802  cnmpt2vsca  22803  cnmpt1ds  23450  cnmpt2ds  23451  fsumcn  23478  cnmpopc  23532  htpyco1  23582  htpyco2  23583  phtpyco2  23594  pi1xfrf  23657  pi1xfr  23659  pi1xfrcnvlem  23660  pi1xfrcnv  23661  pi1cof  23663  pi1coghm  23665  cnmpt1ip  23850  cnmpt2ip  23851  txsconnlem  32487  txsconn  32488  cvmlift3lem6  32571  fcnre  41302  refsumcn  41307  refsum2cnlem1  41314  fprodcnlem  41900  icccncfext  42190  itgsubsticclem  42280
  Copyright terms: Public domain W3C validator