MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmcom Structured version   Visualization version   GIF version

Theorem cycsubmcom 18343
Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
cycsubmcom.b 𝐵 = (Base‘𝐺)
cycsubmcom.t · = (.g𝐺)
cycsubmcom.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubmcom.c 𝐶 = ran 𝐹
cycsubmcom.p + = (+g𝐺)
Assertion
Ref Expression
cycsubmcom (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥, ·
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   + (𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem cycsubmcom
Dummy variables 𝑐 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubmcom.b . . . . . 6 𝐵 = (Base‘𝐺)
2 cycsubmcom.t . . . . . 6 · = (.g𝐺)
3 cycsubmcom.f . . . . . 6 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
4 cycsubmcom.c . . . . . 6 𝐶 = ran 𝐹
51, 2, 3, 4cycsubmel 18339 . . . . 5 (𝑐𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
65biimpi 218 . . . 4 (𝑐𝐶 → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
76adantl 484 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ 𝑐𝐶) → ∃𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
87ralrimiva 3181 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ∀𝑐𝐶𝑖 ∈ ℕ0 𝑐 = (𝑖 · 𝐴))
9 simplll 773 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝐺 ∈ Mnd)
10 simprl 769 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
11 simprr 771 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
12 simpllr 774 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝐴𝐵)
13 cycsubmcom.p . . . . 5 + = (+g𝐺)
141, 2, 13mulgnn0dir 18253 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0𝐴𝐵)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
159, 10, 11, 12, 14syl13anc 1367 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
1615ralrimivva 3190 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ∀𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴)))
17 simprl 769 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝐶)
18 simprr 771 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝐶)
19 nn0sscn 11900 . . 3 0 ⊆ ℂ
2019a1i 11 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → ℕ0 ⊆ ℂ)
218, 16, 17, 18, 20cyccom 18342 1 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wrex 3138  wss 3933  cmpt 5143  ran crn 5553  cfv 6352  (class class class)co 7153  cc 10532   + caddc 10537  0cn0 11895  Basecbs 16479  +gcplusg 16561  Mndcmnd 17907  .gcmg 18220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-n0 11896  df-z 11980  df-uz 12242  df-fz 12891  df-seq 13368  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mulg 18221
This theorem is referenced by:  cycsubmcmn  19004
  Copyright terms: Public domain W3C validator