MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuinf Structured version   Visualization version   GIF version

Theorem djuinf 9614
Description: A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuinf (ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))

Proof of Theorem djuinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8515 . . . . 5 Rel ≼
21brrelex2i 5609 . . . 4 (ω ≼ 𝐴𝐴 ∈ V)
3 djudoml 9610 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ≼ (𝐴𝐴))
42, 2, 3syl2anc 586 . . 3 (ω ≼ 𝐴𝐴 ≼ (𝐴𝐴))
5 domtr 8562 . . 3 ((ω ≼ 𝐴𝐴 ≼ (𝐴𝐴)) → ω ≼ (𝐴𝐴))
64, 5mpdan 685 . 2 (ω ≼ 𝐴 → ω ≼ (𝐴𝐴))
71brrelex2i 5609 . . . 4 (ω ≼ (𝐴𝐴) → (𝐴𝐴) ∈ V)
8 anidm 567 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ 𝐴 ∈ V)
9 djuexb 9338 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐴𝐴) ∈ V)
108, 9bitr3i 279 . . . 4 (𝐴 ∈ V ↔ (𝐴𝐴) ∈ V)
117, 10sylibr 236 . . 3 (ω ≼ (𝐴𝐴) → 𝐴 ∈ V)
12 domeng 8523 . . . . 5 ((𝐴𝐴) ∈ V → (ω ≼ (𝐴𝐴) ↔ ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴))))
137, 12syl 17 . . . 4 (ω ≼ (𝐴𝐴) → (ω ≼ (𝐴𝐴) ↔ ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴))))
1413ibi 269 . . 3 (ω ≼ (𝐴𝐴) → ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)))
15 indi 4250 . . . . . . 7 (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴)))
16 simpr 487 . . . . . . . . 9 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ⊆ (𝐴𝐴))
17 df-dju 9330 . . . . . . . . 9 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
1816, 17sseqtrdi 4017 . . . . . . . 8 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} × 𝐴)))
19 df-ss 3952 . . . . . . . 8 (𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} × 𝐴)) ↔ (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥)
2018, 19sylib 220 . . . . . . 7 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥)
2115, 20syl5eqr 2870 . . . . . 6 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) = 𝑥)
22 ensym 8558 . . . . . . 7 (ω ≈ 𝑥𝑥 ≈ ω)
2322adantr 483 . . . . . 6 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ≈ ω)
2421, 23eqbrtrd 5088 . . . . 5 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω)
25 cdainflem 9613 . . . . . 6 (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} × 𝐴)) ≈ ω))
26 snex 5332 . . . . . . . . . . 11 {∅} ∈ V
27 xpexg 7473 . . . . . . . . . . 11 (({∅} ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ∈ V)
2826, 27mpan 688 . . . . . . . . . 10 (𝐴 ∈ V → ({∅} × 𝐴) ∈ V)
29 inss2 4206 . . . . . . . . . 10 (𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴)
30 ssdomg 8555 . . . . . . . . . 10 (({∅} × 𝐴) ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴)))
3128, 29, 30mpisyl 21 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴))
32 0ex 5211 . . . . . . . . . 10 ∅ ∈ V
33 xpsnen2g 8610 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
3432, 33mpan 688 . . . . . . . . 9 (𝐴 ∈ V → ({∅} × 𝐴) ≈ 𝐴)
35 domentr 8568 . . . . . . . . 9 (((𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴)
3631, 34, 35syl2anc 586 . . . . . . . 8 (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴)
37 domen1 8659 . . . . . . . 8 ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω → ((𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴))
3836, 37syl5ibcom 247 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω → ω ≼ 𝐴))
39 snex 5332 . . . . . . . . . . 11 {1o} ∈ V
40 xpexg 7473 . . . . . . . . . . 11 (({1o} ∈ V ∧ 𝐴 ∈ V) → ({1o} × 𝐴) ∈ V)
4139, 40mpan 688 . . . . . . . . . 10 (𝐴 ∈ V → ({1o} × 𝐴) ∈ V)
42 inss2 4206 . . . . . . . . . 10 (𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o} × 𝐴)
43 ssdomg 8555 . . . . . . . . . 10 (({1o} × 𝐴) ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o} × 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴)))
4441, 42, 43mpisyl 21 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴))
45 1on 8109 . . . . . . . . . 10 1o ∈ On
46 xpsnen2g 8610 . . . . . . . . . 10 ((1o ∈ On ∧ 𝐴 ∈ V) → ({1o} × 𝐴) ≈ 𝐴)
4745, 46mpan 688 . . . . . . . . 9 (𝐴 ∈ V → ({1o} × 𝐴) ≈ 𝐴)
48 domentr 8568 . . . . . . . . 9 (((𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴) ∧ ({1o} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴)
4944, 47, 48syl2anc 586 . . . . . . . 8 (𝐴 ∈ V → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴)
50 domen1 8659 . . . . . . . 8 ((𝑥 ∩ ({1o} × 𝐴)) ≈ ω → ((𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴))
5149, 50syl5ibcom 247 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ≈ ω → ω ≼ 𝐴))
5238, 51jaod 855 . . . . . 6 (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} × 𝐴)) ≈ ω) → ω ≼ 𝐴))
5325, 52syl5 34 . . . . 5 (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω → ω ≼ 𝐴))
5424, 53syl5 34 . . . 4 (𝐴 ∈ V → ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ω ≼ 𝐴))
5554exlimdv 1934 . . 3 (𝐴 ∈ V → (∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ω ≼ 𝐴))
5611, 14, 55sylc 65 . 2 (ω ≼ (𝐴𝐴) → ω ≼ 𝐴)
576, 56impbii 211 1 (ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  Vcvv 3494  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4567   class class class wbr 5066   × cxp 5553  Oncon0 6191  ωcom 7580  1oc1o 8095  cen 8506  cdom 8507  cdju 9327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330
This theorem is referenced by:  infdif  9631
  Copyright terms: Public domain W3C validator