MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djulepw Structured version   Visualization version   GIF version

Theorem djulepw 9618
Description: If 𝐴 is idempotent under cardinal sum and 𝐵 is dominated by the power set of 𝐴, then so is the cardinal sum of 𝐴 and 𝐵. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
djulepw (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)

Proof of Theorem djulepw
StepHypRef Expression
1 djueq1 9334 . . 3 (𝐴 = ∅ → (𝐴𝐵) = (∅ ⊔ 𝐵))
21breq1d 5076 . 2 (𝐴 = ∅ → ((𝐴𝐵) ≼ 𝒫 𝐴 ↔ (∅ ⊔ 𝐵) ≼ 𝒫 𝐴))
3 relen 8514 . . . . . . . . 9 Rel ≈
43brrelex2i 5609 . . . . . . . 8 ((𝐴𝐴) ≈ 𝐴𝐴 ∈ V)
54adantr 483 . . . . . . 7 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ V)
6 canth2g 8671 . . . . . . 7 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
7 sdomdom 8537 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
85, 6, 73syl 18 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
9 simpr 487 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
10 reldom 8515 . . . . . . . . 9 Rel ≼
1110brrelex1i 5608 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
12 djudom1 9608 . . . . . . . 8 ((𝐴 ≼ 𝒫 𝐴𝐵 ∈ V) → (𝐴𝐵) ≼ (𝒫 𝐴𝐵))
1311, 12sylan2 594 . . . . . . 7 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴𝐵))
14 simpr 487 . . . . . . . 8 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
1510brrelex2i 5609 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
16 djudom2 9609 . . . . . . . 8 ((𝐵 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1714, 15, 16syl2anc2 587 . . . . . . 7 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
18 domtr 8562 . . . . . . 7 (((𝐴𝐵) ≼ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1913, 17, 18syl2anc 586 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
208, 9, 19syl2anc 586 . . . . 5 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
21 pwdju1 9616 . . . . . 6 (𝐴 ∈ V → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
225, 21syl 17 . . . . 5 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
23 domentr 8568 . . . . 5 (((𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
2420, 22, 23syl2anc 586 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
2524adantr 483 . . 3 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
26 0sdomg 8646 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
275, 26syl 17 . . . . . . . 8 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
2827biimpar 480 . . . . . . 7 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
29 0sdom1dom 8716 . . . . . . 7 (∅ ≺ 𝐴 ↔ 1o𝐴)
3028, 29sylib 220 . . . . . 6 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 1o𝐴)
315adantr 483 . . . . . 6 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
32 djudom2 9609 . . . . . 6 ((1o𝐴𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
3330, 31, 32syl2anc 586 . . . . 5 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
34 simpll 765 . . . . 5 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐴) ≈ 𝐴)
35 domentr 8568 . . . . 5 (((𝐴 ⊔ 1o) ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≼ 𝐴)
3633, 34, 35syl2anc 586 . . . 4 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 ⊔ 1o) ≼ 𝐴)
37 pwdom 8669 . . . 4 ((𝐴 ⊔ 1o) ≼ 𝐴 → 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
3836, 37syl 17 . . 3 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
39 domtr 8562 . . 3 (((𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o) ∧ 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
4025, 38, 39syl2anc 586 . 2 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐵) ≼ 𝒫 𝐴)
41 0ex 5211 . . . 4 ∅ ∈ V
4211adantl 484 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
43 djucomen 9603 . . . 4 ((∅ ∈ V ∧ 𝐵 ∈ V) → (∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅))
4441, 42, 43sylancr 589 . . 3 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅))
45 dju0en 9601 . . . . 5 (𝐵 ∈ V → (𝐵 ⊔ ∅) ≈ 𝐵)
46 domen1 8659 . . . . 5 ((𝐵 ⊔ ∅) ≈ 𝐵 → ((𝐵 ⊔ ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
4742, 45, 463syl 18 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → ((𝐵 ⊔ ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
489, 47mpbird 259 . . 3 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐵 ⊔ ∅) ≼ 𝒫 𝐴)
49 endomtr 8567 . . 3 (((∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅) ∧ (𝐵 ⊔ ∅) ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≼ 𝒫 𝐴)
5044, 48, 49syl2anc 586 . 2 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≼ 𝒫 𝐴)
512, 40, 50pm2.61ne 3102 1 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  c0 4291  𝒫 cpw 4539   class class class wbr 5066  1oc1o 8095  cen 8506  cdom 8507  csdm 8508  cdju 9327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-1o 8102  df-2o 8103  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-dju 9330
This theorem is referenced by:  gchdomtri  10051
  Copyright terms: Public domain W3C validator