MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbl2 Structured version   Visualization version   GIF version

Theorem efgcpbl2 18086
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
Assertion
Ref Expression
efgcpbl2 ((𝐴 𝑋𝐵 𝑌) → (𝐴 ++ 𝐵) (𝑋 ++ 𝑌))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)   𝑋(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑌(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)

Proof of Theorem efgcpbl2
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 efgval.r . . . 4 = ( ~FG𝐼)
31, 2efger 18047 . . 3 Er 𝑊
43a1i 11 . 2 ((𝐴 𝑋𝐵 𝑌) → Er 𝑊)
5 simpl 473 . . . . 5 ((𝐴 𝑋𝐵 𝑌) → 𝐴 𝑋)
64, 5ercl 7699 . . . 4 ((𝐴 𝑋𝐵 𝑌) → 𝐴𝑊)
7 wrd0 13264 . . . . 5 ∅ ∈ Word (𝐼 × 2𝑜)
81efgrcl 18044 . . . . . . 7 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
96, 8syl 17 . . . . . 6 ((𝐴 𝑋𝐵 𝑌) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
109simprd 479 . . . . 5 ((𝐴 𝑋𝐵 𝑌) → 𝑊 = Word (𝐼 × 2𝑜))
117, 10syl5eleqr 2711 . . . 4 ((𝐴 𝑋𝐵 𝑌) → ∅ ∈ 𝑊)
12 simpr 477 . . . 4 ((𝐴 𝑋𝐵 𝑌) → 𝐵 𝑌)
13 efgval2.m . . . . 5 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
14 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
15 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
16 efgred.s . . . . 5 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
171, 2, 13, 14, 15, 16efgcpbl 18085 . . . 4 ((𝐴𝑊 ∧ ∅ ∈ 𝑊𝐵 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ((𝐴 ++ 𝑌) ++ ∅))
186, 11, 12, 17syl3anc 1323 . . 3 ((𝐴 𝑋𝐵 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) ((𝐴 ++ 𝑌) ++ ∅))
196, 10eleqtrd 2706 . . . . 5 ((𝐴 𝑋𝐵 𝑌) → 𝐴 ∈ Word (𝐼 × 2𝑜))
204, 12ercl 7699 . . . . . 6 ((𝐴 𝑋𝐵 𝑌) → 𝐵𝑊)
2120, 10eleqtrd 2706 . . . . 5 ((𝐴 𝑋𝐵 𝑌) → 𝐵 ∈ Word (𝐼 × 2𝑜))
22 ccatcl 13293 . . . . 5 ((𝐴 ∈ Word (𝐼 × 2𝑜) ∧ 𝐵 ∈ Word (𝐼 × 2𝑜)) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2𝑜))
2319, 21, 22syl2anc 692 . . . 4 ((𝐴 𝑋𝐵 𝑌) → (𝐴 ++ 𝐵) ∈ Word (𝐼 × 2𝑜))
24 ccatrid 13304 . . . 4 ((𝐴 ++ 𝐵) ∈ Word (𝐼 × 2𝑜) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵))
2523, 24syl 17 . . 3 ((𝐴 𝑋𝐵 𝑌) → ((𝐴 ++ 𝐵) ++ ∅) = (𝐴 ++ 𝐵))
264, 12ercl2 7701 . . . . . 6 ((𝐴 𝑋𝐵 𝑌) → 𝑌𝑊)
2726, 10eleqtrd 2706 . . . . 5 ((𝐴 𝑋𝐵 𝑌) → 𝑌 ∈ Word (𝐼 × 2𝑜))
28 ccatcl 13293 . . . . 5 ((𝐴 ∈ Word (𝐼 × 2𝑜) ∧ 𝑌 ∈ Word (𝐼 × 2𝑜)) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2𝑜))
2919, 27, 28syl2anc 692 . . . 4 ((𝐴 𝑋𝐵 𝑌) → (𝐴 ++ 𝑌) ∈ Word (𝐼 × 2𝑜))
30 ccatrid 13304 . . . 4 ((𝐴 ++ 𝑌) ∈ Word (𝐼 × 2𝑜) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌))
3129, 30syl 17 . . 3 ((𝐴 𝑋𝐵 𝑌) → ((𝐴 ++ 𝑌) ++ ∅) = (𝐴 ++ 𝑌))
3218, 25, 313brtr3d 4649 . 2 ((𝐴 𝑋𝐵 𝑌) → (𝐴 ++ 𝐵) (𝐴 ++ 𝑌))
331, 2, 13, 14, 15, 16efgcpbl 18085 . . . 4 ((∅ ∈ 𝑊𝑌𝑊𝐴 𝑋) → ((∅ ++ 𝐴) ++ 𝑌) ((∅ ++ 𝑋) ++ 𝑌))
3411, 26, 5, 33syl3anc 1323 . . 3 ((𝐴 𝑋𝐵 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) ((∅ ++ 𝑋) ++ 𝑌))
35 ccatlid 13303 . . . . 5 (𝐴 ∈ Word (𝐼 × 2𝑜) → (∅ ++ 𝐴) = 𝐴)
3619, 35syl 17 . . . 4 ((𝐴 𝑋𝐵 𝑌) → (∅ ++ 𝐴) = 𝐴)
3736oveq1d 6620 . . 3 ((𝐴 𝑋𝐵 𝑌) → ((∅ ++ 𝐴) ++ 𝑌) = (𝐴 ++ 𝑌))
384, 5ercl2 7701 . . . . . 6 ((𝐴 𝑋𝐵 𝑌) → 𝑋𝑊)
3938, 10eleqtrd 2706 . . . . 5 ((𝐴 𝑋𝐵 𝑌) → 𝑋 ∈ Word (𝐼 × 2𝑜))
40 ccatlid 13303 . . . . 5 (𝑋 ∈ Word (𝐼 × 2𝑜) → (∅ ++ 𝑋) = 𝑋)
4139, 40syl 17 . . . 4 ((𝐴 𝑋𝐵 𝑌) → (∅ ++ 𝑋) = 𝑋)
4241oveq1d 6620 . . 3 ((𝐴 𝑋𝐵 𝑌) → ((∅ ++ 𝑋) ++ 𝑌) = (𝑋 ++ 𝑌))
4334, 37, 423brtr3d 4649 . 2 ((𝐴 𝑋𝐵 𝑌) → (𝐴 ++ 𝑌) (𝑋 ++ 𝑌))
444, 32, 43ertrd 7704 1 ((𝐴 𝑋𝐵 𝑌) → (𝐴 ++ 𝐵) (𝑋 ++ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wral 2912  {crab 2916  Vcvv 3191  cdif 3557  c0 3896  {csn 4153  cop 4159  cotp 4161   ciun 4490   class class class wbr 4618  cmpt 4678   I cid 4989   × cxp 5077  ran crn 5080  cfv 5850  (class class class)co 6605  cmpt2 6607  1𝑜c1o 7499  2𝑜c2o 7500   Er wer 7685  0cc0 9881  1c1 9882  cmin 10211  ...cfz 12265  ..^cfzo 12403  #chash 13054  Word cword 13225   ++ cconcat 13227   splice csplice 13230  ⟨“cs2 13518   ~FG cefg 18035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-ot 4162  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-ec 7690  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-hash 13055  df-word 13233  df-concat 13235  df-s1 13236  df-substr 13237  df-splice 13238  df-s2 13525  df-efg 18038
This theorem is referenced by:  frgpcpbl  18088
  Copyright terms: Public domain W3C validator