Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiophb Structured version   Visualization version   GIF version

Theorem eldiophb 36786
Description: Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
eldiophb (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Distinct variable groups:   𝐷,𝑘,𝑝   𝑘,𝑁,𝑝,𝑡,𝑢
Allowed substitution hints:   𝐷(𝑢,𝑡)

Proof of Theorem eldiophb
Dummy variables 𝑛 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dioph 36785 . . . 4 Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}))
21dmmptss 5593 . . 3 dom Dioph ⊆ ℕ0
3 elfvdm 6178 . . 3 (𝐷 ∈ (Dioph‘𝑁) → 𝑁 ∈ dom Dioph)
42, 3sseldi 3586 . 2 (𝐷 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
5 fveq2 6150 . . . . . . 7 (𝑛 = 𝑁 → (ℤ𝑛) = (ℤ𝑁))
6 eqidd 2627 . . . . . . 7 (𝑛 = 𝑁 → (mzPoly‘(1...𝑘)) = (mzPoly‘(1...𝑘)))
7 oveq2 6613 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
87reseq2d 5360 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑢 ↾ (1...𝑛)) = (𝑢 ↾ (1...𝑁)))
98eqeq2d 2636 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑡 = (𝑢 ↾ (1...𝑛)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
109anbi1d 740 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1110rexbidv 3050 . . . . . . . 8 (𝑛 = 𝑁 → (∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1211abbidv 2744 . . . . . . 7 (𝑛 = 𝑁 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
135, 6, 12mpt2eq123dv 6671 . . . . . 6 (𝑛 = 𝑁 → (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}) = (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
1413rneqd 5317 . . . . 5 (𝑛 = 𝑁 → ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}) = ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
15 ovex 6633 . . . . . . 7 (ℕ0𝑚 (1...𝑁)) ∈ V
1615pwex 4813 . . . . . 6 𝒫 (ℕ0𝑚 (1...𝑁)) ∈ V
17 eqid 2626 . . . . . . . 8 (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) = (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
1817rnmpt2 6724 . . . . . . 7 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) = {𝑑 ∣ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}}
19 elmapi 7824 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (ℕ0𝑚 (1...𝑘)) → 𝑢:(1...𝑘)⟶ℕ0)
20 fzss2 12320 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑘))
21 fssres 6029 . . . . . . . . . . . . . . . . 17 ((𝑢:(1...𝑘)⟶ℕ0 ∧ (1...𝑁) ⊆ (1...𝑘)) → (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
2219, 20, 21syl2anr 495 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0𝑚 (1...𝑘))) → (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
23 nn0ex 11243 . . . . . . . . . . . . . . . . 17 0 ∈ V
24 ovex 6633 . . . . . . . . . . . . . . . . 17 (1...𝑁) ∈ V
2523, 24elmap 7831 . . . . . . . . . . . . . . . 16 ((𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
2622, 25sylibr 224 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0𝑚 (1...𝑘))) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁)))
27 eleq1 2692 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁))))
2827adantr 481 . . . . . . . . . . . . . . 15 ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁))))
2926, 28syl5ibrcom 237 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0𝑚 (1...𝑘))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 ∈ (ℕ0𝑚 (1...𝑁))))
3029rexlimdva 3029 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑁) → (∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 ∈ (ℕ0𝑚 (1...𝑁))))
3130abssdv 3660 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑁) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ (ℕ0𝑚 (1...𝑁)))
3215elpw2 4793 . . . . . . . . . . . 12 ({𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0𝑚 (1...𝑁)) ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ (ℕ0𝑚 (1...𝑁)))
3331, 32sylibr 224 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0𝑚 (1...𝑁)))
34 eleq1 2692 . . . . . . . . . . 11 (𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → (𝑑 ∈ 𝒫 (ℕ0𝑚 (1...𝑁)) ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0𝑚 (1...𝑁))))
3533, 34syl5ibrcom 237 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → (𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0𝑚 (1...𝑁))))
3635rexlimdvw 3032 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0𝑚 (1...𝑁))))
3736rexlimiv 3025 . . . . . . . 8 (∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0𝑚 (1...𝑁)))
3837abssi 3661 . . . . . . 7 {𝑑 ∣ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}} ⊆ 𝒫 (ℕ0𝑚 (1...𝑁))
3918, 38eqsstri 3619 . . . . . 6 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ⊆ 𝒫 (ℕ0𝑚 (1...𝑁))
4016, 39ssexi 4768 . . . . 5 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ∈ V
4114, 1, 40fvmpt 6240 . . . 4 (𝑁 ∈ ℕ0 → (Dioph‘𝑁) = ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
4241eleq2d 2689 . . 3 (𝑁 ∈ ℕ0 → (𝐷 ∈ (Dioph‘𝑁) ↔ 𝐷 ∈ ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})))
43 ovex 6633 . . . . . 6 (ℕ0𝑚 (1...𝑘)) ∈ V
4443abrexex 7090 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁))} ∈ V
45 simpl 473 . . . . . . 7 ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 = (𝑢 ↾ (1...𝑁)))
4645reximi 3010 . . . . . 6 (∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁)))
4746ss2abi 3658 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁))}
4844, 47ssexi 4768 . . . 4 {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ V
4917, 48elrnmpt2 6727 . . 3 (𝐷 ∈ ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ↔ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
5042, 49syl6bb 276 . 2 (𝑁 ∈ ℕ0 → (𝐷 ∈ (Dioph‘𝑁) ↔ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
514, 50biadan2 673 1 (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1992  {cab 2612  wrex 2913  wss 3560  𝒫 cpw 4135  dom cdm 5079  ran crn 5080  cres 5081  wf 5846  cfv 5850  (class class class)co 6605  cmpt2 6607  𝑚 cmap 7803  0cc0 9881  1c1 9882  0cn0 11237  cuz 11631  ...cfz 12265  mzPolycmzp 36751  Diophcdioph 36784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-i2m1 9949  ax-1ne0 9950  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-dioph 36785
This theorem is referenced by:  eldioph  36787  eldioph2b  36792  eldiophelnn0  36793
  Copyright terms: Public domain W3C validator