MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz0ubfz0 Structured version   Visualization version   GIF version

Theorem elfz0ubfz0 12400
Description: An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
Assertion
Ref Expression
elfz0ubfz0 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))

Proof of Theorem elfz0ubfz0
StepHypRef Expression
1 elfz2nn0 12388 . . . 4 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
2 elfz2 12291 . . . . . 6 (𝐿 ∈ (𝐾...𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)))
3 simpr1 1065 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐾 ∈ ℕ0)
4 elnn0z 11350 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
5 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℤ)
6 0z 11348 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℤ
7 zletr 11381 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
86, 7mp3an1 1408 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
9 elnn0z 11350 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿))
109simplbi2 654 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → (0 ≤ 𝐿𝐿 ∈ ℕ0))
115, 8, 10sylsyld 61 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 𝐿 ∈ ℕ0))
1211expd 452 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐾𝐿𝐿 ∈ ℕ0)))
1312impancom 456 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝐿 ∈ ℤ → (𝐾𝐿𝐿 ∈ ℕ0)))
144, 13sylbi 207 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝐾𝐿𝐿 ∈ ℕ0)))
1514com13 88 . . . . . . . . . . . . . . 15 (𝐾𝐿 → (𝐿 ∈ ℤ → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1615adantr 481 . . . . . . . . . . . . . 14 ((𝐾𝐿𝐿𝑁) → (𝐿 ∈ ℤ → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1716com12 32 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
18173ad2ant3 1082 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1918imp 445 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0))
2019com12 32 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → 𝐿 ∈ ℕ0))
21203ad2ant1 1080 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → 𝐿 ∈ ℕ0))
2221impcom 446 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐿 ∈ ℕ0)
23 simplrl 799 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐾𝐿)
243, 22, 233jca 1240 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
2524ex 450 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
262, 25sylbi 207 . . . . 5 (𝐿 ∈ (𝐾...𝑁) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
2726com12 32 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐿 ∈ (𝐾...𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
281, 27sylbi 207 . . 3 (𝐾 ∈ (0...𝑁) → (𝐿 ∈ (𝐾...𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
2928imp 445 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
30 elfz2nn0 12388 . 2 (𝐾 ∈ (0...𝐿) ↔ (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
3129, 30sylibr 224 1 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wcel 1987   class class class wbr 4623  (class class class)co 6615  0cc0 9896  cle 10035  0cn0 11252  cz 11337  ...cfz 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285
This theorem is referenced by:  swrdswrd  13414
  Copyright terms: Public domain W3C validator