Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpsuppss Structured version   Visualization version   GIF version

Theorem mndpsuppss 42662
 Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019.)
Hypothesis
Ref Expression
mndpsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
mndpsuppss (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))

Proof of Theorem mndpsuppss
Dummy variables 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 512 . . . . . 6 (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) ↔ (¬ (𝐴𝑥) ≠ (0g𝑀) ∧ ¬ (𝐵𝑥) ≠ (0g𝑀)))
2 nne 2936 . . . . . . 7 (¬ (𝐴𝑥) ≠ (0g𝑀) ↔ (𝐴𝑥) = (0g𝑀))
3 nne 2936 . . . . . . 7 (¬ (𝐵𝑥) ≠ (0g𝑀) ↔ (𝐵𝑥) = (0g𝑀))
42, 3anbi12i 735 . . . . . 6 ((¬ (𝐴𝑥) ≠ (0g𝑀) ∧ ¬ (𝐵𝑥) ≠ (0g𝑀)) ↔ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)))
51, 4bitri 264 . . . . 5 (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) ↔ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)))
6 elmapfn 8046 . . . . . . . . . . . 12 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴 Fn 𝑉)
76ad2antrl 766 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝐴 Fn 𝑉)
87adantr 472 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝐴 Fn 𝑉)
9 elmapfn 8046 . . . . . . . . . . . 12 (𝐵 ∈ (𝑅𝑚 𝑉) → 𝐵 Fn 𝑉)
109ad2antll 767 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝐵 Fn 𝑉)
1110adantr 472 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝐵 Fn 𝑉)
12 simplr 809 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝑉𝑋)
1312adantr 472 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝑉𝑋)
14 inidm 3965 . . . . . . . . . 10 (𝑉𝑉) = 𝑉
15 simplrl 819 . . . . . . . . . 10 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → (𝐴𝑥) = (0g𝑀))
16 simplrr 820 . . . . . . . . . 10 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → (𝐵𝑥) = (0g𝑀))
178, 11, 13, 13, 14, 15, 16ofval 7071 . . . . . . . . 9 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) = ((0g𝑀)(+g𝑀)(0g𝑀)))
1817an32s 881 . . . . . . . 8 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) = ((0g𝑀)(+g𝑀)(0g𝑀)))
19 eqid 2760 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
20 eqid 2760 . . . . . . . . . . . 12 (0g𝑀) = (0g𝑀)
2119, 20mndidcl 17509 . . . . . . . . . . 11 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
2221ancli 575 . . . . . . . . . 10 (𝑀 ∈ Mnd → (𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)))
2322ad4antr 771 . . . . . . . . 9 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → (𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)))
24 eqid 2760 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
2519, 24, 20mndlid 17512 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)) → ((0g𝑀)(+g𝑀)(0g𝑀)) = (0g𝑀))
2623, 25syl 17 . . . . . . . 8 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((0g𝑀)(+g𝑀)(0g𝑀)) = (0g𝑀))
2718, 26eqtrd 2794 . . . . . . 7 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) = (0g𝑀))
28 nne 2936 . . . . . . 7 (¬ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀) ↔ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) = (0g𝑀))
2927, 28sylibr 224 . . . . . 6 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ¬ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀))
3029ex 449 . . . . 5 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)) → ¬ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)))
315, 30syl5bi 232 . . . 4 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) → ¬ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)))
3231con4d 114 . . 3 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀) → ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))))
3332ss2rabdv 3824 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → {𝑥𝑉 ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))})
347, 10, 12, 12, 14offn 7073 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴𝑓 (+g𝑀)𝐵) Fn 𝑉)
35 fnfun 6149 . . . . 5 ((𝐴𝑓 (+g𝑀)𝐵) Fn 𝑉 → Fun (𝐴𝑓 (+g𝑀)𝐵))
3634, 35syl 17 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → Fun (𝐴𝑓 (+g𝑀)𝐵))
37 ovex 6841 . . . . 5 (𝐴𝑓 (+g𝑀)𝐵) ∈ V
3837a1i 11 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴𝑓 (+g𝑀)𝐵) ∈ V)
39 fvexd 6364 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (0g𝑀) ∈ V)
40 suppval1 7469 . . . 4 ((Fun (𝐴𝑓 (+g𝑀)𝐵) ∧ (𝐴𝑓 (+g𝑀)𝐵) ∈ V ∧ (0g𝑀) ∈ V) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥 ∈ dom (𝐴𝑓 (+g𝑀)𝐵) ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
4136, 38, 39, 40syl3anc 1477 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥 ∈ dom (𝐴𝑓 (+g𝑀)𝐵) ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
4212, 7, 10offvalfv 42631 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴𝑓 (+g𝑀)𝐵) = (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))))
4342dmeqd 5481 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → dom (𝐴𝑓 (+g𝑀)𝐵) = dom (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))))
44 ovex 6841 . . . . . 6 ((𝐴𝑣)(+g𝑀)(𝐵𝑣)) ∈ V
45 eqid 2760 . . . . . 6 (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))) = (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣)))
4644, 45dmmpti 6184 . . . . 5 dom (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))) = 𝑉
4743, 46syl6eq 2810 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → dom (𝐴𝑓 (+g𝑀)𝐵) = 𝑉)
48 rabeq 3332 . . . 4 (dom (𝐴𝑓 (+g𝑀)𝐵) = 𝑉 → {𝑥 ∈ dom (𝐴𝑓 (+g𝑀)𝐵) ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
4947, 48syl 17 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → {𝑥 ∈ dom (𝐴𝑓 (+g𝑀)𝐵) ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
5041, 49eqtrd 2794 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥𝑉 ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
51 elmapfun 8047 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → Fun 𝐴)
52 id 22 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴 ∈ (𝑅𝑚 𝑉))
53 fvexd 6364 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → (0g𝑀) ∈ V)
54 suppval1 7469 . . . . . . 7 ((Fun 𝐴𝐴 ∈ (𝑅𝑚 𝑉) ∧ (0g𝑀) ∈ V) → (𝐴 supp (0g𝑀)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5551, 52, 53, 54syl3anc 1477 . . . . . 6 (𝐴 ∈ (𝑅𝑚 𝑉) → (𝐴 supp (0g𝑀)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)})
56 elmapi 8045 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴:𝑉𝑅)
57 fdm 6212 . . . . . . 7 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
58 rabeq 3332 . . . . . . 7 (dom 𝐴 = 𝑉 → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5956, 57, 583syl 18 . . . . . 6 (𝐴 ∈ (𝑅𝑚 𝑉) → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
6055, 59eqtrd 2794 . . . . 5 (𝐴 ∈ (𝑅𝑚 𝑉) → (𝐴 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
6160ad2antrl 766 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
62 elmapfun 8047 . . . . . . 7 (𝐵 ∈ (𝑅𝑚 𝑉) → Fun 𝐵)
6362ad2antll 767 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → Fun 𝐵)
64 simprr 813 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝐵 ∈ (𝑅𝑚 𝑉))
65 suppval1 7469 . . . . . 6 ((Fun 𝐵𝐵 ∈ (𝑅𝑚 𝑉) ∧ (0g𝑀) ∈ V) → (𝐵 supp (0g𝑀)) = {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)})
6663, 64, 39, 65syl3anc 1477 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐵 supp (0g𝑀)) = {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)})
67 elmapi 8045 . . . . . . . 8 (𝐵 ∈ (𝑅𝑚 𝑉) → 𝐵:𝑉𝑅)
68 fdm 6212 . . . . . . . 8 (𝐵:𝑉𝑅 → dom 𝐵 = 𝑉)
6967, 68syl 17 . . . . . . 7 (𝐵 ∈ (𝑅𝑚 𝑉) → dom 𝐵 = 𝑉)
7069ad2antll 767 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → dom 𝐵 = 𝑉)
71 rabeq 3332 . . . . . 6 (dom 𝐵 = 𝑉 → {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)})
7270, 71syl 17 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)})
7366, 72eqtrd 2794 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐵 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)})
7461, 73uneq12d 3911 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) = ({𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)} ∪ {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)}))
75 unrab 4041 . . 3 ({𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)} ∪ {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)}) = {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))}
7674, 75syl6eq 2810 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) = {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))})
7733, 50, 763sstr4d 3789 1 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  {crab 3054  Vcvv 3340   ∪ cun 3713   ⊆ wss 3715   ↦ cmpt 4881  dom cdm 5266  Fun wfun 6043   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813   ∘𝑓 cof 7060   supp csupp 7463   ↑𝑚 cmap 8023  Basecbs 16059  +gcplusg 16143  0gc0g 16302  Mndcmnd 17495 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-1st 7333  df-2nd 7334  df-supp 7464  df-map 8025  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496 This theorem is referenced by:  mndpsuppfi  42666
 Copyright terms: Public domain W3C validator