Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmsuppss Structured version   Visualization version   GIF version

Theorem rmsuppss 41967
Description: The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmsuppss (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑀)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmsuppss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6535 . . . . . . 7 ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (𝐶(.r𝑀)(0g𝑀)))
2 simpll1 1092 . . . . . . . 8 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Ring)
3 simpll3 1094 . . . . . . . 8 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → 𝐶𝑅)
4 rmsuppss.r . . . . . . . . 9 𝑅 = (Base‘𝑀)
5 eqid 2609 . . . . . . . . 9 (.r𝑀) = (.r𝑀)
6 eqid 2609 . . . . . . . . 9 (0g𝑀) = (0g𝑀)
74, 5, 6ringrz 18360 . . . . . . . 8 ((𝑀 ∈ Ring ∧ 𝐶𝑅) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
82, 3, 7syl2anc 690 . . . . . . 7 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
91, 8sylan9eqr 2665 . . . . . 6 (((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) = (0g𝑀)) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
109ex 448 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀)))
1110necon3d 2802 . . . 4 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) → (𝐴𝑤) ≠ (0g𝑀)))
1211ss2rabdv 3645 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} ⊆ {𝑤𝑉 ∣ (𝐴𝑤) ≠ (0g𝑀)})
13 elmapi 7743 . . . . . 6 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴:𝑉𝑅)
14 fdm 5950 . . . . . 6 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
1513, 14syl 17 . . . . 5 (𝐴 ∈ (𝑅𝑚 𝑉) → dom 𝐴 = 𝑉)
1615adantl 480 . . . 4 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → dom 𝐴 = 𝑉)
17 rabeq 3165 . . . 4 (dom 𝐴 = 𝑉 → {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (𝐴𝑤) ≠ (0g𝑀)})
1816, 17syl 17 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (𝐴𝑤) ≠ (0g𝑀)})
1912, 18sseqtr4d 3604 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} ⊆ {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
20 fveq2 6088 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
2120oveq2d 6543 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
2221cbvmptv 4672 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
23 simpl2 1057 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → 𝑉𝑋)
24 fvex 6098 . . . 4 (0g𝑀) ∈ V
2524a1i 11 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → (0g𝑀) ∈ V)
26 ovex 6555 . . . 4 (𝐶(.r𝑀)(𝐴𝑤)) ∈ V
2726a1i 11 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
2822, 23, 25, 27mptsuppd 7183 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
29 elmapfun 7745 . . . 4 (𝐴 ∈ (𝑅𝑚 𝑉) → Fun 𝐴)
3029adantl 480 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → Fun 𝐴)
31 simpr 475 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → 𝐴 ∈ (𝑅𝑚 𝑉))
32 suppval1 7166 . . 3 ((Fun 𝐴𝐴 ∈ (𝑅𝑚 𝑉) ∧ (0g𝑀) ∈ V) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
3330, 31, 25, 32syl3anc 1317 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
3419, 28, 333sstr4d 3610 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  {crab 2899  Vcvv 3172  wss 3539  cmpt 4637  dom cdm 5028  Fun wfun 5784  wf 5786  cfv 5790  (class class class)co 6527   supp csupp 7160  𝑚 cmap 7722  Basecbs 15644  .rcmulr 15718  0gc0g 15872  Ringcrg 18319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-plusg 15730  df-0g 15874  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-grp 17197  df-mgp 18262  df-ring 18321
This theorem is referenced by:  rmsuppfi  41970
  Copyright terms: Public domain W3C validator