![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elwwlks2ons3 | Structured version Visualization version GIF version |
Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.) |
Ref | Expression |
---|---|
wwlks2onv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
elwwlks2ons3 | ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) | |
2 | wwlks2onv.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | elwwlks2ons3im 26919 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)) |
4 | anass 682 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉))) | |
5 | 1, 3, 4 | sylanbrc 699 | . . 3 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉)) |
6 | simpr 476 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊‘1) ∈ 𝑉) | |
7 | s3eq2 13661 | . . . . . 6 ⊢ (𝑏 = (𝑊‘1) → 〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉) | |
8 | eqeq2 2662 | . . . . . . 7 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → (𝑊 = 〈“𝐴𝑏𝐶”〉 ↔ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉)) | |
9 | eleq1 2718 | . . . . . . 7 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
10 | 8, 9 | anbi12d 747 | . . . . . 6 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
11 | 7, 10 | syl 17 | . . . . 5 ⊢ (𝑏 = (𝑊‘1) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) ∧ 𝑏 = (𝑊‘1)) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
13 | simpr 476 | . . . . . 6 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) | |
14 | eleq1 2718 | . . . . . . 7 ⊢ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
15 | 14 | biimpac 502 | . . . . . 6 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
16 | 13, 15 | jca 553 | . . . . 5 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
17 | 16 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
18 | 6, 12, 17 | rspcedvd 3348 | . . 3 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
19 | 5, 18 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
20 | eleq1 2718 | . . . . 5 ⊢ (〈“𝐴𝑏𝐶”〉 = 𝑊 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
21 | 20 | eqcoms 2659 | . . . 4 ⊢ (𝑊 = 〈“𝐴𝑏𝐶”〉 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
22 | 21 | biimpa 500 | . . 3 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
23 | 22 | rexlimivw 3058 | . 2 ⊢ (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
24 | 19, 23 | impbii 199 | 1 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 ‘cfv 5926 (class class class)co 6690 1c1 9975 2c2 11108 〈“cs3 13633 Vtxcvtx 25919 WWalksNOn cwwlksnon 26775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-concat 13333 df-s1 13334 df-s2 13639 df-s3 13640 df-wwlks 26778 df-wwlksn 26779 df-wwlksnon 26780 |
This theorem is referenced by: elwwlks2on 26925 frgr2wwlk1 27309 |
Copyright terms: Public domain | W3C validator |