MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2ons3im Structured version   Visualization version   GIF version

Theorem elwwlks2ons3im 27731
Description: A walk as word of length 2 between two vertices is a length 3 string and its second symbol is a vertex. (Contributed by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2ons3im (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))

Proof of Theorem elwwlks2ons3im
StepHypRef Expression
1 wwlks2onv.v . . 3 𝑉 = (Vtx‘𝐺)
21wwlksonvtx 27631 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐶𝑉))
3 wwlknon 27633 . . 3 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶))
4 wwlknbp1 27620 . . . . 5 (𝑊 ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)))
5 2p1e3 11773 . . . . . . . 8 (2 + 1) = 3
65eqeq2i 2833 . . . . . . 7 ((♯‘𝑊) = (2 + 1) ↔ (♯‘𝑊) = 3)
7 1ex 10630 . . . . . . . . . . . . . 14 1 ∈ V
87tpid2 4699 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
9 fzo0to3tp 13120 . . . . . . . . . . . . 13 (0..^3) = {0, 1, 2}
108, 9eleqtrri 2911 . . . . . . . . . . . 12 1 ∈ (0..^3)
11 oveq2 7157 . . . . . . . . . . . 12 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = (0..^3))
1210, 11eleqtrrid 2919 . . . . . . . . . . 11 ((♯‘𝑊) = 3 → 1 ∈ (0..^(♯‘𝑊)))
13 wrdsymbcl 13871 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ∈ (0..^(♯‘𝑊))) → (𝑊‘1) ∈ (Vtx‘𝐺))
1412, 13sylan2 594 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (𝑊‘1) ∈ (Vtx‘𝐺))
15143ad2ant1 1128 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → (𝑊‘1) ∈ (Vtx‘𝐺))
16 simpl1r 1220 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (♯‘𝑊) = 3)
17 simpl 485 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘0) = 𝐴)
18 eqidd 2821 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘1) = (𝑊‘1))
19 simpr 487 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘2) = 𝐶)
2017, 18, 193jca 1123 . . . . . . . . . . . . 13 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
21203ad2ant2 1129 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
2221adantr 483 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
231eqcomi 2829 . . . . . . . . . . . . . . . . . 18 (Vtx‘𝐺) = 𝑉
2423wrdeqi 13882 . . . . . . . . . . . . . . . . 17 Word (Vtx‘𝐺) = Word 𝑉
2524eleq2i 2903 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
2625biimpi 218 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
2726adantr 483 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → 𝑊 ∈ Word 𝑉)
28273ad2ant1 1128 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → 𝑊 ∈ Word 𝑉)
2928adantr 483 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word 𝑉)
30 simpl3l 1223 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐴𝑉)
3123eleq2i 2903 . . . . . . . . . . . . . 14 ((𝑊‘1) ∈ (Vtx‘𝐺) ↔ (𝑊‘1) ∈ 𝑉)
3231biimpi 218 . . . . . . . . . . . . 13 ((𝑊‘1) ∈ (Vtx‘𝐺) → (𝑊‘1) ∈ 𝑉)
3332adantl 484 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊‘1) ∈ 𝑉)
34 simpl3r 1224 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐶𝑉)
35 eqwrds3 14320 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉 ∧ (𝑊‘1) ∈ 𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3629, 30, 33, 34, 35syl13anc 1367 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3716, 22, 36mpbir2and 711 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
3837, 33jca 514 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
3915, 38mpdan 685 . . . . . . . 8 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
40393exp 1114 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
416, 40sylan2b 595 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
42413adant1 1125 . . . . 5 ((2 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
434, 42syl 17 . . . 4 (𝑊 ∈ (2 WWalksN 𝐺) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
44433impib 1111 . . 3 ((𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
453, 44sylbi 219 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
462, 45mpd 15 1 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  {ctp 4564  cfv 6348  (class class class)co 7149  0cc0 10530  1c1 10531   + caddc 10533  2c2 11686  3c3 11687  0cn0 11891  ..^cfzo 13030  chash 13687  Word cword 13858  ⟨“cs3 14199  Vtxcvtx 26779   WWalksN cwwlksn 27602   WWalksNOn cwwlksnon 27603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-fzo 13031  df-hash 13688  df-word 13859  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-wwlks 27606  df-wwlksn 27607  df-wwlksnon 27608
This theorem is referenced by:  elwwlks2ons3  27732
  Copyright terms: Public domain W3C validator