MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensymb Structured version   Visualization version   GIF version

Theorem ensymb 7949
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensymb (𝐴𝐵𝐵𝐴)

Proof of Theorem ensymb
StepHypRef Expression
1 ener 7947 . . . 4 ≈ Er V
21a1i 11 . . 3 (⊤ → ≈ Er V)
32ersymb 7702 . 2 (⊤ → (𝐴𝐵𝐵𝐴))
43trud 1490 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wtru 1481  Vcvv 3191   class class class wbr 4618   Er wer 7685  cen 7897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-er 7688  df-en 7901
This theorem is referenced by:  ensym  7950  0sdomg  8034  snnen2o  8094  cantnfp1lem2  8521  cantnflem1  8531  iscard2  8747  dffin1-5  9155  pmtrsn  17855  volmeas  30067  isnumbasgrplem1  37138  rp-isfinite6  37331
  Copyright terms: Public domain W3C validator