Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthvdres Structured version   Visualization version   GIF version

Theorem eupthvdres 27358
 Description: Formerly part of proof of eupth2 27362: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupthvdres.v 𝑉 = (Vtx‘𝐺)
eupthvdres.i 𝐼 = (iEdg‘𝐺)
eupthvdres.g (𝜑𝐺𝑊)
eupthvdres.f (𝜑 → Fun 𝐼)
eupthvdres.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthvdres.h 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩
Assertion
Ref Expression
eupthvdres (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))

Proof of Theorem eupthvdres
StepHypRef Expression
1 eupthvdres.g . 2 (𝜑𝐺𝑊)
2 eupthvdres.h . . . 4 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩
3 opex 5069 . . . 4 𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩ ∈ V
42, 3eqeltri 2823 . . 3 𝐻 ∈ V
54a1i 11 . 2 (𝜑𝐻 ∈ V)
62fveq2i 6343 . . . 4 (Vtx‘𝐻) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)
7 eupthvdres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
8 fvex 6350 . . . . . . . 8 (Vtx‘𝐺) ∈ V
97, 8eqeltri 2823 . . . . . . 7 𝑉 ∈ V
10 eupthvdres.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
11 fvex 6350 . . . . . . . . 9 (iEdg‘𝐺) ∈ V
1210, 11eqeltri 2823 . . . . . . . 8 𝐼 ∈ V
1312resex 5589 . . . . . . 7 (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V
149, 13pm3.2i 470 . . . . . 6 (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V)
1514a1i 11 . . . . 5 (𝜑 → (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V))
16 opvtxfv 26054 . . . . 5 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = 𝑉)
1715, 16syl 17 . . . 4 (𝜑 → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = 𝑉)
186, 17syl5eq 2794 . . 3 (𝜑 → (Vtx‘𝐻) = 𝑉)
1918, 7syl6eq 2798 . 2 (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺))
202fveq2i 6343 . . . . 5 (iEdg‘𝐻) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)
21 opiedgfv 26057 . . . . . 6 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))))
2215, 21syl 17 . . . . 5 (𝜑 → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))))
2320, 22syl5eq 2794 . . . 4 (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))))
24 eupthvdres.p . . . . . . 7 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
2510eupthf1o 27327 . . . . . . 7 (𝐹(EulerPaths‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
2624, 25syl 17 . . . . . 6 (𝜑𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
27 f1ofo 6293 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)
28 foima 6269 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼)
2926, 27, 283syl 18 . . . . 5 (𝜑 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼)
3029reseq2d 5539 . . . 4 (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) = (𝐼 ↾ dom 𝐼))
31 eupthvdres.f . . . . . 6 (𝜑 → Fun 𝐼)
32 funfn 6067 . . . . . 6 (Fun 𝐼𝐼 Fn dom 𝐼)
3331, 32sylib 208 . . . . 5 (𝜑𝐼 Fn dom 𝐼)
34 fnresdm 6149 . . . . 5 (𝐼 Fn dom 𝐼 → (𝐼 ↾ dom 𝐼) = 𝐼)
3533, 34syl 17 . . . 4 (𝜑 → (𝐼 ↾ dom 𝐼) = 𝐼)
3623, 30, 353eqtrd 2786 . . 3 (𝜑 → (iEdg‘𝐻) = 𝐼)
3736, 10syl6eq 2798 . 2 (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺))
381, 5, 19, 37vtxdeqd 26554 1 (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1620   ∈ wcel 2127  Vcvv 3328  ⟨cop 4315   class class class wbr 4792  dom cdm 5254   ↾ cres 5256   “ cima 5257  Fun wfun 6031   Fn wfn 6032  –onto→wfo 6035  –1-1-onto→wf1o 6036  ‘cfv 6037  (class class class)co 6801  0cc0 10099  ..^cfzo 12630  ♯chash 13282  Vtxcvtx 26044  iEdgciedg 26045  VtxDegcvtxdg 26542  EulerPathsceupth 27320 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-fzo 12631  df-hash 13283  df-word 13456  df-vtx 26046  df-iedg 26047  df-vtxdg 26543  df-wlks 26676  df-trls 26770  df-eupth 27321 This theorem is referenced by:  eupth2  27362
 Copyright terms: Public domain W3C validator