Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelel Structured version   Visualization version   GIF version

Theorem ex-sategoelel 32668
Description: Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypotheses
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
ex-sategoelel.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
Assertion
Ref Expression
ex-sategoelel (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑀   𝑥,𝑍
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem ex-sategoelel
StepHypRef Expression
1 simpr 487 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑍𝑀)
2 simpl 485 . . . . . . . . 9 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑀 ∈ WUni)
32, 1wunpw 10129 . . . . . . . 8 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝒫 𝑍𝑀)
42wun0 10140 . . . . . . . 8 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → ∅ ∈ 𝑀)
53, 4ifcld 4512 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝑥 = 𝐵, 𝒫 𝑍, ∅) ∈ 𝑀)
61, 5ifcld 4512 . . . . . 6 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
76adantr 483 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
87adantr 483 . . . 4 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 ∈ ω) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
9 ex-sategoelel.s . . . 4 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
108, 9fmptd 6878 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆:ω⟶𝑀)
112adantr 483 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑀 ∈ WUni)
12 omex 9106 . . . . 5 ω ∈ V
1312a1i 11 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → ω ∈ V)
1411, 13elmapd 8420 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆 ∈ (𝑀m ω) ↔ 𝑆:ω⟶𝑀))
1510, 14mpbird 259 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆 ∈ (𝑀m ω))
16 pwidg 4561 . . . . 5 (𝑍𝑀𝑍 ∈ 𝒫 𝑍)
1716adantl 484 . . . 4 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑍 ∈ 𝒫 𝑍)
1817adantr 483 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑍 ∈ 𝒫 𝑍)
199a1i 11 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))))
20 iftrue 4473 . . . . 5 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = 𝑍)
2120adantl 484 . . . 4 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = 𝑍)
22 simpr1 1190 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
231adantr 483 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑍𝑀)
2419, 21, 22, 23fvmptd 6775 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) = 𝑍)
25 eqeq1 2825 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
26 eqeq1 2825 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 = 𝐵𝐵 = 𝐵))
2726ifbid 4489 . . . . . . 7 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝒫 𝑍, ∅) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
2825, 27ifbieq2d 4492 . . . . . 6 (𝑥 = 𝐵 → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)))
29 necom 3069 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
30 ifnefalse 4479 . . . . . . . . 9 (𝐵𝐴 → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3129, 30sylbi 219 . . . . . . . 8 (𝐴𝐵 → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
32313ad2ant3 1131 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3332adantl 484 . . . . . 6 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3428, 33sylan9eqr 2878 . . . . 5 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
35 simpr2 1191 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ ω)
36 pwexg 5279 . . . . . . . 8 (𝑍𝑀 → 𝒫 𝑍 ∈ V)
3736adantl 484 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝒫 𝑍 ∈ V)
38 0ex 5211 . . . . . . . 8 ∅ ∈ V
3938a1i 11 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → ∅ ∈ V)
4037, 39ifcld 4512 . . . . . 6 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝐵 = 𝐵, 𝒫 𝑍, ∅) ∈ V)
4140adantr 483 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝐵 = 𝐵, 𝒫 𝑍, ∅) ∈ V)
4219, 34, 35, 41fvmptd 6775 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐵) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
43 eqid 2821 . . . . 5 𝐵 = 𝐵
4443iftruei 4474 . . . 4 if(𝐵 = 𝐵, 𝒫 𝑍, ∅) = 𝒫 𝑍
4542, 44syl6eq 2872 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐵) = 𝒫 𝑍)
4618, 24, 453eltr4d 2928 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) ∈ (𝑆𝐵))
47 3simpa 1144 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
48 sategoelfvb.s . . . 4 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
4948sategoelfvb 32666 . . 3 ((𝑀 ∈ WUni ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
502, 47, 49syl2an 597 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
5115, 46, 50mpbir2and 711 1 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  c0 4291  ifcif 4467  𝒫 cpw 4539  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  ωcom 7580  m cmap 8406  WUnicwun 10122  𝑔cgoe 32580   Sat csate 32585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-ac2 9885
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-card 9368  df-ac 9542  df-wun 10124  df-goel 32587  df-gona 32588  df-goal 32589  df-sat 32590  df-sate 32591  df-fmla 32592
This theorem is referenced by:  ex-sategoel  32669
  Copyright terms: Public domain W3C validator