MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnn0ind Structured version   Visualization version   GIF version

Theorem fnn0ind 11304
Description: Induction on the integers from 0 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fnn0ind.1 (𝑥 = 0 → (𝜑𝜓))
fnn0ind.2 (𝑥 = 𝑦 → (𝜑𝜒))
fnn0ind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fnn0ind.4 (𝑥 = 𝐾 → (𝜑𝜏))
fnn0ind.5 (𝑁 ∈ ℕ0𝜓)
fnn0ind.6 ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))
Assertion
Ref Expression
fnn0ind ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑦,𝑁   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fnn0ind
StepHypRef Expression
1 elnn0z 11219 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
2 nn0z 11229 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 0z 11217 . . . . . . . 8 0 ∈ ℤ
4 fnn0ind.1 . . . . . . . . 9 (𝑥 = 0 → (𝜑𝜓))
5 fnn0ind.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜒))
6 fnn0ind.3 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
7 fnn0ind.4 . . . . . . . . 9 (𝑥 = 𝐾 → (𝜑𝜏))
8 elnn0z 11219 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
9 fnn0ind.5 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝜓)
108, 9sylbir 223 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝜓)
11103adant1 1071 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝜓)
12 zre 11210 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
13 zre 11210 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 0re 9892 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
15 lelttr 9975 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 < 𝑁))
16 ltle 9973 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
17163adant2 1072 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
1815, 17syld 45 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
1914, 18mp3an1 1402 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
2012, 13, 19syl2an 492 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
2120ex 448 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑁 ∈ ℤ → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁)))
2221com23 83 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → ((0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → 0 ≤ 𝑁)))
23223impib 1253 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → 0 ≤ 𝑁))
2423impcom 444 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → 0 ≤ 𝑁)
25 elnn0z 11219 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
2625anbi1i 726 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁))
27 fnn0ind.6 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))
28273expb 1257 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑦 < 𝑁)) → (𝜒𝜃))
298, 26, 28syl2anbr 495 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) ∧ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁)) → (𝜒𝜃))
3029expcom 449 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁) → ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝜒𝜃)))
31303impa 1250 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝜒𝜃)))
3231expd 450 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → (0 ≤ 𝑁 → (𝜒𝜃))))
3332impcom 444 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (0 ≤ 𝑁 → (𝜒𝜃)))
3424, 33mpd 15 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (𝜒𝜃))
3534adantll 745 . . . . . . . . 9 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (𝜒𝜃))
364, 5, 6, 7, 11, 35fzind 11303 . . . . . . . 8 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)) → 𝜏)
373, 36mpanl1 711 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)) → 𝜏)
3837expcom 449 . . . . . 6 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) → (𝑁 ∈ ℤ → 𝜏))
392, 38syl5 33 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
40393expa 1256 . . . 4 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ 𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
411, 40sylanb 487 . . 3 ((𝐾 ∈ ℕ0𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
4241impcom 444 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐾𝑁)) → 𝜏)
43423impb 1251 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1975   class class class wbr 4573  (class class class)co 6523  cr 9787  0cc0 9788  1c1 9789   + caddc 9791   < clt 9926  cle 9927  0cn0 11135  cz 11206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-n0 11136  df-z 11207
This theorem is referenced by:  nn0seqcvgd  15063  poimirlem28  32406
  Copyright terms: Public domain W3C validator