Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege98 Structured version   Visualization version   GIF version

Theorem frege98 40314
Description: If 𝑌 follows 𝑋 and 𝑍 follows 𝑌 in the 𝑅-sequence then 𝑍 follows 𝑋 in the 𝑅-sequence because the transitive closure of a relation has the transitive property. Proposition 98 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 6-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege98.x 𝑋𝐴
frege98.y 𝑌𝐵
frege98.z 𝑍𝐶
frege98.r 𝑅𝐷
Assertion
Ref Expression
frege98 (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍𝑋(t+‘𝑅)𝑍))

Proof of Theorem frege98
StepHypRef Expression
1 frege98.x . . . 4 𝑋𝐴
2 frege98.r . . . 4 𝑅𝐷
31, 2frege97 40313 . . 3 𝑅 hereditary ((t+‘𝑅) “ {𝑋})
4 frege98.y . . . 4 𝑌𝐵
5 frege98.z . . . 4 𝑍𝐶
6 fvex 6685 . . . . 5 (t+‘𝑅) ∈ V
7 imaexg 7622 . . . . 5 ((t+‘𝑅) ∈ V → ((t+‘𝑅) “ {𝑋}) ∈ V)
86, 7ax-mp 5 . . . 4 ((t+‘𝑅) “ {𝑋}) ∈ V
94, 5, 2, 8frege84 40300 . . 3 (𝑅 hereditary ((t+‘𝑅) “ {𝑋}) → (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) → (𝑌(t+‘𝑅)𝑍𝑍 ∈ ((t+‘𝑅) “ {𝑋}))))
103, 9ax-mp 5 . 2 (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) → (𝑌(t+‘𝑅)𝑍𝑍 ∈ ((t+‘𝑅) “ {𝑋})))
111elexi 3515 . . . 4 𝑋 ∈ V
124elexi 3515 . . . 4 𝑌 ∈ V
1311, 12elimasn 5956 . . 3 (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) ↔ ⟨𝑋, 𝑌⟩ ∈ (t+‘𝑅))
14 df-br 5069 . . 3 (𝑋(t+‘𝑅)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (t+‘𝑅))
1513, 14bitr4i 280 . 2 (𝑌 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 𝑋(t+‘𝑅)𝑌)
165elexi 3515 . . . . 5 𝑍 ∈ V
1711, 16elimasn 5956 . . . 4 (𝑍 ∈ ((t+‘𝑅) “ {𝑋}) ↔ ⟨𝑋, 𝑍⟩ ∈ (t+‘𝑅))
18 df-br 5069 . . . 4 (𝑋(t+‘𝑅)𝑍 ↔ ⟨𝑋, 𝑍⟩ ∈ (t+‘𝑅))
1917, 18bitr4i 280 . . 3 (𝑍 ∈ ((t+‘𝑅) “ {𝑋}) ↔ 𝑋(t+‘𝑅)𝑍)
2019imbi2i 338 . 2 ((𝑌(t+‘𝑅)𝑍𝑍 ∈ ((t+‘𝑅) “ {𝑋})) ↔ (𝑌(t+‘𝑅)𝑍𝑋(t+‘𝑅)𝑍))
2110, 15, 203imtr3i 293 1 (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍𝑋(t+‘𝑅)𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  Vcvv 3496  {csn 4569  cop 4575   class class class wbr 5068  cima 5560  cfv 6357  t+ctcl 14347   hereditary whe 40125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-frege1 40143  ax-frege2 40144  ax-frege8 40162  ax-frege52a 40210  ax-frege58b 40254
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-trcl 14349  df-relexp 14382  df-he 40126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator