MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprmselelfz Structured version   Visualization version   GIF version

Theorem fvprmselelfz 15970
Description: The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020.)
Hypothesis
Ref Expression
fvprmselelfz.f 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
Assertion
Ref Expression
fvprmselelfz ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹𝑋) ∈ (1...𝑁))
Distinct variable groups:   𝑚,𝑁   𝑚,𝑋
Allowed substitution hint:   𝐹(𝑚)

Proof of Theorem fvprmselelfz
StepHypRef Expression
1 fvprmselelfz.f . . . . 5 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
21a1i 11 . . . 4 ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
3 eleq1 2827 . . . . . 6 (𝑚 = 𝑋 → (𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ))
4 id 22 . . . . . 6 (𝑚 = 𝑋𝑚 = 𝑋)
53, 4ifbieq1d 4253 . . . . 5 (𝑚 = 𝑋 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑋 ∈ ℙ, 𝑋, 1))
6 iftrue 4236 . . . . . 6 (𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
76adantr 472 . . . . 5 ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
85, 7sylan9eqr 2816 . . . 4 (((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋)
9 elfznn 12583 . . . . . 6 (𝑋 ∈ (1...𝑁) → 𝑋 ∈ ℕ)
109adantl 473 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → 𝑋 ∈ ℕ)
1110adantl 473 . . . 4 ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℕ)
12 simpl 474 . . . 4 ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℙ)
132, 8, 11, 12fvmptd 6451 . . 3 ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹𝑋) = 𝑋)
14 simprr 813 . . 3 ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ (1...𝑁))
1513, 14eqeltrd 2839 . 2 ((𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹𝑋) ∈ (1...𝑁))
161a1i 11 . . . 4 ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
17 iffalse 4239 . . . . . 6 𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
1817adantr 472 . . . . 5 ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
195, 18sylan9eqr 2816 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
2010adantl 473 . . . 4 ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 𝑋 ∈ ℕ)
21 1nn 11243 . . . . 5 1 ∈ ℕ
2221a1i 11 . . . 4 ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 1 ∈ ℕ)
2316, 19, 20, 22fvmptd 6451 . . 3 ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹𝑋) = 1)
24 elnnuz 11937 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
25 eluzfz1 12561 . . . . . 6 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
2624, 25sylbi 207 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ (1...𝑁))
2726adantr 472 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
2827adantl 473 . . 3 ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → 1 ∈ (1...𝑁))
2923, 28eqeltrd 2839 . 2 ((¬ 𝑋 ∈ ℙ ∧ (𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁))) → (𝐹𝑋) ∈ (1...𝑁))
3015, 29pm2.61ian 866 1 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...𝑁)) → (𝐹𝑋) ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  ifcif 4230  cmpt 4881  cfv 6049  (class class class)co 6814  1c1 10149  cn 11232  cuz 11899  ...cfz 12539  cprime 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-z 11590  df-uz 11900  df-fz 12540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator