Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaclem Structured version   Visualization version   GIF version

Theorem gchaclem 9538
 Description: Lemma for gchac 9541 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
gchaclem.1 (𝜑 → ω ≼ 𝐴)
gchaclem.3 (𝜑 → 𝒫 𝐶 ∈ GCH)
gchaclem.4 (𝜑 → (𝐴𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵)))
Assertion
Ref Expression
gchaclem (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵)))

Proof of Theorem gchaclem
StepHypRef Expression
1 gchaclem.4 . . . 4 (𝜑 → (𝐴𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵)))
21simpld 474 . . 3 (𝜑𝐴𝐶)
3 reldom 8003 . . . . . 6 Rel ≼
43brrelex2i 5193 . . . . 5 (𝐴𝐶𝐶 ∈ V)
52, 4syl 17 . . . 4 (𝜑𝐶 ∈ V)
6 canth2g 8155 . . . 4 (𝐶 ∈ V → 𝐶 ≺ 𝒫 𝐶)
7 sdomdom 8025 . . . 4 (𝐶 ≺ 𝒫 𝐶𝐶 ≼ 𝒫 𝐶)
85, 6, 73syl 18 . . 3 (𝜑𝐶 ≼ 𝒫 𝐶)
9 domtr 8050 . . 3 ((𝐴𝐶𝐶 ≼ 𝒫 𝐶) → 𝐴 ≼ 𝒫 𝐶)
102, 8, 9syl2anc 694 . 2 (𝜑𝐴 ≼ 𝒫 𝐶)
11 gchaclem.3 . . . . . 6 (𝜑 → 𝒫 𝐶 ∈ GCH)
1211adantr 480 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → 𝒫 𝐶 ∈ GCH)
13 gchaclem.1 . . . . . . . 8 (𝜑 → ω ≼ 𝐴)
14 domtr 8050 . . . . . . . 8 ((ω ≼ 𝐴𝐴𝐶) → ω ≼ 𝐶)
1513, 2, 14syl2anc 694 . . . . . . 7 (𝜑 → ω ≼ 𝐶)
1615adantr 480 . . . . . 6 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → ω ≼ 𝐶)
17 pwcdaidm 9055 . . . . . 6 (ω ≼ 𝐶 → (𝒫 𝐶 +𝑐 𝒫 𝐶) ≈ 𝒫 𝐶)
1816, 17syl 17 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶 +𝑐 𝒫 𝐶) ≈ 𝒫 𝐶)
19 simpr 476 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → 𝐵 ≼ 𝒫 𝒫 𝐶)
20 gchdomtri 9489 . . . . 5 ((𝒫 𝐶 ∈ GCH ∧ (𝒫 𝐶 +𝑐 𝒫 𝐶) ≈ 𝒫 𝐶𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶))
2112, 18, 19, 20syl3anc 1366 . . . 4 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶))
2221ex 449 . . 3 (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶)))
23 pwdom 8153 . . . . 5 (𝐴𝐶 → 𝒫 𝐴 ≼ 𝒫 𝐶)
24 domtr 8050 . . . . . 6 ((𝒫 𝐴 ≼ 𝒫 𝐶 ∧ 𝒫 𝐶𝐵) → 𝒫 𝐴𝐵)
2524ex 449 . . . . 5 (𝒫 𝐴 ≼ 𝒫 𝐶 → (𝒫 𝐶𝐵 → 𝒫 𝐴𝐵))
262, 23, 253syl 18 . . . 4 (𝜑 → (𝒫 𝐶𝐵 → 𝒫 𝐴𝐵))
271simprd 478 . . . 4 (𝜑 → (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵))
2826, 27jaod 394 . . 3 (𝜑 → ((𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶) → 𝒫 𝐴𝐵))
2922, 28syld 47 . 2 (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵))
3010, 29jca 553 1 (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∈ wcel 2030  Vcvv 3231  𝒫 cpw 4191   class class class wbr 4685  (class class class)co 6690  ωcom 7107   ≈ cen 7994   ≼ cdom 7995   ≺ csdm 7996   +𝑐 ccda 9027  GCHcgch 9480 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-1o 7605  df-2o 7606  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-wdom 8505  df-card 8803  df-cda 9028  df-gch 9481 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator