MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchhar Structured version   Visualization version   GIF version

Theorem gchhar 9445
Description: A "local" form of gchac 9447. If 𝐴 and 𝒫 𝐴 are GCH-sets, then the Hartogs number of 𝐴 is 𝒫 𝐴 (so 𝒫 𝐴 and a fortiori 𝐴 are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchhar ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)

Proof of Theorem gchhar
StepHypRef Expression
1 harcl 8410 . . . 4 (har‘𝐴) ∈ On
2 simp3 1061 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ∈ GCH)
3 cdadom3 8954 . . . 4 (((har‘𝐴) ∈ On ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) +𝑐 𝒫 𝐴))
41, 2, 3sylancr 694 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) +𝑐 𝒫 𝐴))
5 domnsym 8030 . . . . . . . . 9 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
653ad2ant1 1080 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ≺ ω)
7 isfinite 8493 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
86, 7sylnibr 319 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ∈ Fin)
9 pwfi 8205 . . . . . . 7 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
108, 9sylnib 318 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝒫 𝐴 ∈ Fin)
11 cdadom3 8954 . . . . . . 7 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝒫 𝐴 ≼ (𝒫 𝐴 +𝑐 (har‘𝐴)))
122, 1, 11sylancl 693 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴 +𝑐 (har‘𝐴)))
13 ovex 6632 . . . . . . . 8 (𝒫 𝐴 +𝑐 (har‘𝐴)) ∈ V
1413canth2 8057 . . . . . . 7 (𝒫 𝐴 +𝑐 (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 +𝑐 (har‘𝐴))
15 pwcdaen 8951 . . . . . . . . 9 ((𝒫 𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝒫 (𝒫 𝐴 +𝑐 (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)))
162, 1, 15sylancl 693 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 +𝑐 (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)))
17 pwexg 4810 . . . . . . . . . . 11 (𝒫 𝐴 ∈ GCH → 𝒫 𝒫 𝐴 ∈ V)
182, 17syl 17 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝒫 𝐴 ∈ V)
19 simp2 1060 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ∈ GCH)
20 harwdom 8439 . . . . . . . . . . 11 (𝐴 ∈ GCH → (har‘𝐴) ≼* 𝒫 (𝐴 × 𝐴))
21 wdompwdom 8427 . . . . . . . . . . 11 ((har‘𝐴) ≼* 𝒫 (𝐴 × 𝐴) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴))
2219, 20, 213syl 18 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴))
23 xpdom2g 8000 . . . . . . . . . 10 ((𝒫 𝒫 𝐴 ∈ V ∧ 𝒫 (har‘𝐴) ≼ 𝒫 𝒫 (𝐴 × 𝐴)) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
2418, 22, 23syl2anc 692 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
25 xpexg 6913 . . . . . . . . . . . . . 14 ((𝐴 ∈ GCH ∧ 𝐴 ∈ GCH) → (𝐴 × 𝐴) ∈ V)
2619, 19, 25syl2anc 692 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 × 𝐴) ∈ V)
27 pwexg 4810 . . . . . . . . . . . . 13 ((𝐴 × 𝐴) ∈ V → 𝒫 (𝐴 × 𝐴) ∈ V)
2826, 27syl 17 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 × 𝐴) ∈ V)
29 pwcdaen 8951 . . . . . . . . . . . 12 ((𝒫 𝐴 ∈ GCH ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → 𝒫 (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
302, 28, 29syl2anc 692 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)))
3130ensymd 7951 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)))
32 enrefg 7931 . . . . . . . . . . . . . 14 (𝒫 𝐴 ∈ GCH → 𝒫 𝐴 ≈ 𝒫 𝐴)
332, 32syl 17 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ 𝒫 𝐴)
34 gchxpidm 9435 . . . . . . . . . . . . . . 15 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
3519, 8, 34syl2anc 692 . . . . . . . . . . . . . 14 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 × 𝐴) ≈ 𝐴)
36 pwen 8077 . . . . . . . . . . . . . 14 ((𝐴 × 𝐴) ≈ 𝐴 → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴)
3735, 36syl 17 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴)
38 cdaen 8939 . . . . . . . . . . . . 13 ((𝒫 𝐴 ≈ 𝒫 𝐴 ∧ 𝒫 (𝐴 × 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴))
3933, 37, 38syl2anc 692 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴))
40 gchcdaidm 9434 . . . . . . . . . . . . 13 ((𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) → (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 𝐴)
412, 10, 40syl2anc 692 . . . . . . . . . . . 12 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 𝐴)
42 entr 7952 . . . . . . . . . . . 12 (((𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴) ∧ (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴)
4339, 41, 42syl2anc 692 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴)
44 pwen 8077 . . . . . . . . . . 11 ((𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝐴 → 𝒫 (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
4543, 44syl 17 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
46 entr 7952 . . . . . . . . . 10 (((𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ∧ 𝒫 (𝒫 𝐴 +𝑐 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
4731, 45, 46syl2anc 692 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴)
48 domentr 7959 . . . . . . . . 9 (((𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝒫 𝐴 × 𝒫 𝒫 (𝐴 × 𝐴)) ≈ 𝒫 𝒫 𝐴) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
4924, 47, 48syl2anc 692 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
50 endomtr 7958 . . . . . . . 8 ((𝒫 (𝒫 𝐴 +𝑐 (har‘𝐴)) ≈ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ∧ (𝒫 𝒫 𝐴 × 𝒫 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → 𝒫 (𝒫 𝐴 +𝑐 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
5116, 49, 50syl2anc 692 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝒫 𝐴 +𝑐 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴)
52 sdomdomtr 8037 . . . . . . 7 (((𝒫 𝐴 +𝑐 (har‘𝐴)) ≺ 𝒫 (𝒫 𝐴 +𝑐 (har‘𝐴)) ∧ 𝒫 (𝒫 𝐴 +𝑐 (har‘𝐴)) ≼ 𝒫 𝒫 𝐴) → (𝒫 𝐴 +𝑐 (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)
5314, 51, 52sylancr 694 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 +𝑐 (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)
54 gchen1 9391 . . . . . 6 (((𝒫 𝐴 ∈ GCH ∧ ¬ 𝒫 𝐴 ∈ Fin) ∧ (𝒫 𝐴 ≼ (𝒫 𝐴 +𝑐 (har‘𝐴)) ∧ (𝒫 𝐴 +𝑐 (har‘𝐴)) ≺ 𝒫 𝒫 𝐴)) → 𝒫 𝐴 ≈ (𝒫 𝐴 +𝑐 (har‘𝐴)))
552, 10, 12, 53, 54syl22anc 1324 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ (𝒫 𝐴 +𝑐 (har‘𝐴)))
56 cdacomen 8947 . . . . 5 (𝒫 𝐴 +𝑐 (har‘𝐴)) ≈ ((har‘𝐴) +𝑐 𝒫 𝐴)
57 entr 7952 . . . . 5 ((𝒫 𝐴 ≈ (𝒫 𝐴 +𝑐 (har‘𝐴)) ∧ (𝒫 𝐴 +𝑐 (har‘𝐴)) ≈ ((har‘𝐴) +𝑐 𝒫 𝐴)) → 𝒫 𝐴 ≈ ((har‘𝐴) +𝑐 𝒫 𝐴))
5855, 56, 57sylancl 693 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ ((har‘𝐴) +𝑐 𝒫 𝐴))
5958ensymd 7951 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ((har‘𝐴) +𝑐 𝒫 𝐴) ≈ 𝒫 𝐴)
60 domentr 7959 . . 3 (((har‘𝐴) ≼ ((har‘𝐴) +𝑐 𝒫 𝐴) ∧ ((har‘𝐴) +𝑐 𝒫 𝐴) ≈ 𝒫 𝐴) → (har‘𝐴) ≼ 𝒫 𝐴)
614, 59, 60syl2anc 692 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ 𝒫 𝐴)
62 gchcdaidm 9434 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 𝐴) ≈ 𝐴)
6319, 8, 62syl2anc 692 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 +𝑐 𝐴) ≈ 𝐴)
64 pwen 8077 . . . . 5 ((𝐴 +𝑐 𝐴) ≈ 𝐴 → 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴)
6563, 64syl 17 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴)
66 cdadom3 8954 . . . . . . . 8 ((𝐴 ∈ GCH ∧ (har‘𝐴) ∈ On) → 𝐴 ≼ (𝐴 +𝑐 (har‘𝐴)))
6719, 1, 66sylancl 693 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≼ (𝐴 +𝑐 (har‘𝐴)))
68 harndom 8413 . . . . . . . 8 ¬ (har‘𝐴) ≼ 𝐴
69 cdadom3 8954 . . . . . . . . . . 11 (((har‘𝐴) ∈ On ∧ 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) +𝑐 𝐴))
701, 19, 69sylancr 694 . . . . . . . . . 10 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ ((har‘𝐴) +𝑐 𝐴))
71 cdacomen 8947 . . . . . . . . . 10 ((har‘𝐴) +𝑐 𝐴) ≈ (𝐴 +𝑐 (har‘𝐴))
72 domentr 7959 . . . . . . . . . 10 (((har‘𝐴) ≼ ((har‘𝐴) +𝑐 𝐴) ∧ ((har‘𝐴) +𝑐 𝐴) ≈ (𝐴 +𝑐 (har‘𝐴))) → (har‘𝐴) ≼ (𝐴 +𝑐 (har‘𝐴)))
7370, 71, 72sylancl 693 . . . . . . . . 9 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≼ (𝐴 +𝑐 (har‘𝐴)))
74 domen2 8047 . . . . . . . . 9 (𝐴 ≈ (𝐴 +𝑐 (har‘𝐴)) → ((har‘𝐴) ≼ 𝐴 ↔ (har‘𝐴) ≼ (𝐴 +𝑐 (har‘𝐴))))
7573, 74syl5ibrcom 237 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 ≈ (𝐴 +𝑐 (har‘𝐴)) → (har‘𝐴) ≼ 𝐴))
7668, 75mtoi 190 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → ¬ 𝐴 ≈ (𝐴 +𝑐 (har‘𝐴)))
77 brsdom 7922 . . . . . . 7 (𝐴 ≺ (𝐴 +𝑐 (har‘𝐴)) ↔ (𝐴 ≼ (𝐴 +𝑐 (har‘𝐴)) ∧ ¬ 𝐴 ≈ (𝐴 +𝑐 (har‘𝐴))))
7867, 76, 77sylanbrc 697 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝐴 ≺ (𝐴 +𝑐 (har‘𝐴)))
79 canth2g 8058 . . . . . . . . 9 (𝐴 ∈ GCH → 𝐴 ≺ 𝒫 𝐴)
80 sdomdom 7927 . . . . . . . . 9 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
81 cdadom1 8952 . . . . . . . . 9 (𝐴 ≼ 𝒫 𝐴 → (𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 (har‘𝐴)))
8219, 79, 80, 814syl 19 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 (har‘𝐴)))
83 cdadom2 8953 . . . . . . . . 9 ((har‘𝐴) ≼ 𝒫 𝐴 → (𝒫 𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴))
8461, 83syl 17 . . . . . . . 8 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝒫 𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴))
85 domtr 7953 . . . . . . . 8 (((𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 (har‘𝐴)) ∧ (𝒫 𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴)) → (𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴))
8682, 84, 85syl2anc 692 . . . . . . 7 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴))
87 domentr 7959 . . . . . . 7 (((𝐴 +𝑐 (har‘𝐴)) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴) ∧ (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 𝐴) → (𝐴 +𝑐 (har‘𝐴)) ≼ 𝒫 𝐴)
8886, 41, 87syl2anc 692 . . . . . 6 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 +𝑐 (har‘𝐴)) ≼ 𝒫 𝐴)
89 gchen2 9392 . . . . . 6 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ (𝐴 +𝑐 (har‘𝐴)) ∧ (𝐴 +𝑐 (har‘𝐴)) ≼ 𝒫 𝐴)) → (𝐴 +𝑐 (har‘𝐴)) ≈ 𝒫 𝐴)
9019, 8, 78, 88, 89syl22anc 1324 . . . . 5 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (𝐴 +𝑐 (har‘𝐴)) ≈ 𝒫 𝐴)
9190ensymd 7951 . . . 4 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≈ (𝐴 +𝑐 (har‘𝐴)))
92 entr 7952 . . . 4 ((𝒫 (𝐴 +𝑐 𝐴) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ (𝐴 +𝑐 (har‘𝐴))) → 𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 (har‘𝐴)))
9365, 91, 92syl2anc 692 . . 3 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 (har‘𝐴)))
94 endom 7926 . . 3 (𝒫 (𝐴 +𝑐 𝐴) ≈ (𝐴 +𝑐 (har‘𝐴)) → 𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 (har‘𝐴)))
95 pwcdadom 8982 . . 3 (𝒫 (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 (har‘𝐴)) → 𝒫 𝐴 ≼ (har‘𝐴))
9693, 94, 953syl 18 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ≼ (har‘𝐴))
97 sbth 8024 . 2 (((har‘𝐴) ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ (har‘𝐴)) → (har‘𝐴) ≈ 𝒫 𝐴)
9861, 96, 97syl2anc 692 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1036  wcel 1987  Vcvv 3186  𝒫 cpw 4130   class class class wbr 4613   × cxp 5072  Oncon0 5682  cfv 5847  (class class class)co 6604  ωcom 7012  cen 7896  cdom 7897  csdm 7898  Fincfn 7899  harchar 8405  * cwdom 8406   +𝑐 ccda 8933  GCHcgch 9386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-seqom 7488  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-oexp 7511  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-har 8407  df-wdom 8408  df-cnf 8503  df-card 8709  df-cda 8934  df-fin4 9053  df-gch 9387
This theorem is referenced by:  gchacg  9446
  Copyright terms: Public domain W3C validator