Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grucollcld Structured version   Visualization version   GIF version

Theorem grucollcld 40671
Description: A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
grucollcld.1 (𝜑𝐺 ∈ Univ)
grucollcld.2 (𝜑𝐹 ⊆ (𝐺 × 𝐺))
grucollcld.3 (𝜑𝐴𝐺)
Assertion
Ref Expression
grucollcld (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺)

Proof of Theorem grucollcld
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcoll2 40663 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
2 grucollcld.1 . . 3 (𝜑𝐺 ∈ Univ)
3 grucollcld.3 . . 3 (𝜑𝐴𝐺)
4 simpr 487 . . . . . 6 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} = ∅)
52ad2antrr 724 . . . . . . 7 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → 𝐺 ∈ Univ)
63ad2antrr 724 . . . . . . 7 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → 𝐴𝐺)
75, 6gru0eld 40640 . . . . . 6 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → ∅ ∈ 𝐺)
84, 7eqeltrd 2912 . . . . 5 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
9 neq0 4302 . . . . . . 7 (¬ Scott {𝑦𝑥𝐹𝑦} = ∅ ↔ ∃𝑧 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦})
102ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝐺 ∈ Univ)
11 breq2 5063 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
1211elscottab 40655 . . . . . . . . . . . . 13 (𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → 𝑥𝐹𝑧)
1312adantl 484 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑥𝐹𝑧)
14 grucollcld.2 . . . . . . . . . . . . . 14 (𝜑𝐹 ⊆ (𝐺 × 𝐺))
1514ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝐹 ⊆ (𝐺 × 𝐺))
1615ssbrd 5102 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → (𝑥𝐹𝑧𝑥(𝐺 × 𝐺)𝑧))
1713, 16mpd 15 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑥(𝐺 × 𝐺)𝑧)
18 brxp 5594 . . . . . . . . . . . 12 (𝑥(𝐺 × 𝐺)𝑧 ↔ (𝑥𝐺𝑧𝐺))
1918simprbi 499 . . . . . . . . . . 11 (𝑥(𝐺 × 𝐺)𝑧𝑧𝐺)
2017, 19syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑧𝐺)
21 simpr 487 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦})
2210, 20, 21gruscottcld 40660 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
2322expcom 416 . . . . . . . 8 (𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
2423exlimiv 1930 . . . . . . 7 (∃𝑧 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
259, 24sylbi 219 . . . . . 6 (¬ Scott {𝑦𝑥𝐹𝑦} = ∅ → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
2625impcom 410 . . . . 5 (((𝜑𝑥𝐴) ∧ ¬ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
278, 26pm2.61dan 811 . . . 4 ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
2827ralrimiva 3181 . . 3 (𝜑 → ∀𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
29 gruiun 10214 . . 3 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ ∀𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺) → 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
302, 3, 28, 29syl3anc 1366 . 2 (𝜑 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
311, 30eqeltrid 2916 1 (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wex 1779  wcel 2113  {cab 2798  wral 3137  wss 3929  c0 4284   ciun 4912   class class class wbr 5059   × cxp 5546  Univcgru 10205  Scott cscott 40646   Coll ccoll 40661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-reg 9049  ax-inf2 9097  ax-ac2 9878
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-tc 9172  df-r1 9186  df-rank 9187  df-card 9361  df-cf 9363  df-acn 9364  df-ac 9535  df-wina 10099  df-ina 10100  df-gru 10206  df-scott 40647  df-coll 40662
This theorem is referenced by:  grumnudlem  40696
  Copyright terms: Public domain W3C validator