MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutsk1 Structured version   Visualization version   GIF version

Theorem grutsk1 10243
Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 10205.) (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
grutsk1 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ)

Proof of Theorem grutsk1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → Tr 𝑇)
2 tskpw 10175 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
32adantlr 713 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
4 tskpr 10192 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
543expa 1114 . . . . . 6 (((𝑇 ∈ Tarski ∧ 𝑥𝑇) ∧ 𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
65ralrimiva 3182 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇)
76adantlr 713 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇)
8 elmapg 8419 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → (𝑦 ∈ (𝑇m 𝑥) ↔ 𝑦:𝑥𝑇))
98adantlr 713 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝑦 ∈ (𝑇m 𝑥) ↔ 𝑦:𝑥𝑇))
10 tskurn 10211 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇𝑦:𝑥𝑇) → ran 𝑦𝑇)
11103expia 1117 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝑦:𝑥𝑇 ran 𝑦𝑇))
129, 11sylbid 242 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝑦 ∈ (𝑇m 𝑥) → ran 𝑦𝑇))
1312ralrimiv 3181 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇)
143, 7, 133jca 1124 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))
1514ralrimiva 3182 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))
16 elgrug 10214 . . 3 (𝑇 ∈ Tarski → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))))
1716adantr 483 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))))
181, 15, 17mpbir2and 711 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wral 3138  𝒫 cpw 4539  {cpr 4569   cuni 4838  Tr wtr 5172  ran crn 5556  wf 6351  (class class class)co 7156  m cmap 8406  Tarskictsk 10170  Univcgru 10212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-ac2 9885
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-smo 7983  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-oi 8974  df-har 9022  df-r1 9193  df-card 9368  df-aleph 9369  df-cf 9370  df-acn 9371  df-ac 9542  df-wina 10106  df-ina 10107  df-tsk 10171  df-gru 10213
This theorem is referenced by:  grutsk  10244  inagrud  40652
  Copyright terms: Public domain W3C validator