Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashle2prv Structured version   Visualization version   GIF version

Theorem hashle2prv 13243
 Description: A nonempty subset of a powerset of a class 𝑉 has size less than or equal to two iff it is an unordered pair of elements of 𝑉. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
hashle2prv (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((#‘𝑃) ≤ 2 ↔ ∃𝑎𝑉𝑏𝑉 𝑃 = {𝑎, 𝑏}))
Distinct variable groups:   𝑃,𝑎,𝑏   𝑉,𝑎,𝑏

Proof of Theorem hashle2prv
StepHypRef Expression
1 eldifsn 4308 . . 3 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑃 ∈ 𝒫 𝑉𝑃 ≠ ∅))
2 hashle2pr 13242 . . 3 ((𝑃 ∈ 𝒫 𝑉𝑃 ≠ ∅) → ((#‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
31, 2sylbi 207 . 2 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((#‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
4 eldifi 3724 . . . . 5 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → 𝑃 ∈ 𝒫 𝑉)
5 eleq1 2687 . . . . . 6 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
6 vex 3198 . . . . . . 7 𝑎 ∈ V
7 vex 3198 . . . . . . 7 𝑏 ∈ V
8 prelpw 4905 . . . . . . . 8 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
98biimprd 238 . . . . . . 7 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉)))
106, 7, 9mp2an 707 . . . . . 6 ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉))
115, 10syl6bi 243 . . . . 5 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉)))
124, 11syl5com 31 . . . 4 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (𝑃 = {𝑎, 𝑏} → (𝑎𝑉𝑏𝑉)))
1312pm4.71rd 666 . . 3 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (𝑃 = {𝑎, 𝑏} ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑃 = {𝑎, 𝑏})))
14132exbidv 1850 . 2 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (∃𝑎𝑏 𝑃 = {𝑎, 𝑏} ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑃 = {𝑎, 𝑏})))
15 r2ex 3057 . . . 4 (∃𝑎𝑉𝑏𝑉 𝑃 = {𝑎, 𝑏} ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑃 = {𝑎, 𝑏}))
1615bicomi 214 . . 3 (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 𝑃 = {𝑎, 𝑏})
1716a1i 11 . 2 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 𝑃 = {𝑎, 𝑏}))
183, 14, 173bitrd 294 1 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((#‘𝑃) ≤ 2 ↔ ∃𝑎𝑉𝑏𝑉 𝑃 = {𝑎, 𝑏}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1481  ∃wex 1702   ∈ wcel 1988   ≠ wne 2791  ∃wrex 2910  Vcvv 3195   ∖ cdif 3564  ∅c0 3907  𝒫 cpw 4149  {csn 4168  {cpr 4170   class class class wbr 4644  ‘cfv 5876   ≤ cle 10060  2c2 11055  #chash 13100 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-fz 12312  df-hash 13101 This theorem is referenced by:  upgredg  26013  sprvalpwle2  41504
 Copyright terms: Public domain W3C validator