HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubdistr2 Structured version   Visualization version   GIF version

Theorem hvsubdistr2 27085
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubdistr2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))

Proof of Theorem hvsubdistr2
StepHypRef Expression
1 hvmulcl 27048 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
213adant2 1073 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
3 hvmulcl 27048 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
433adant1 1072 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
5 hvsubval 27051 . . 3 (((𝐴 · 𝐶) ∈ ℋ ∧ (𝐵 · 𝐶) ∈ ℋ) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶))))
62, 4, 5syl2anc 691 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶))))
7 mulm1 10323 . . . . . . 7 (𝐵 ∈ ℂ → (-1 · 𝐵) = -𝐵)
87oveq1d 6542 . . . . . 6 (𝐵 ∈ ℂ → ((-1 · 𝐵) · 𝐶) = (-𝐵 · 𝐶))
98adantr 480 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) · 𝐶) = (-𝐵 · 𝐶))
10 neg1cn 10974 . . . . . 6 -1 ∈ ℂ
11 ax-hvmulass 27042 . . . . . 6 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) · 𝐶) = (-1 · (𝐵 · 𝐶)))
1210, 11mp3an1 1403 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) · 𝐶) = (-1 · (𝐵 · 𝐶)))
139, 12eqtr3d 2646 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 · 𝐶) = (-1 · (𝐵 · 𝐶)))
14133adant1 1072 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 · 𝐶) = (-1 · (𝐵 · 𝐶)))
1514oveq2d 6543 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐶) + (-𝐵 · 𝐶)) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶))))
16 negcl 10133 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
17 ax-hvdistr2 27044 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) · 𝐶) = ((𝐴 · 𝐶) + (-𝐵 · 𝐶)))
1816, 17syl3an2 1352 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) · 𝐶) = ((𝐴 · 𝐶) + (-𝐵 · 𝐶)))
19 negsub 10181 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
20193adant3 1074 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 + -𝐵) = (𝐴𝐵))
2120oveq1d 6542 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) · 𝐶) = ((𝐴𝐵) · 𝐶))
2218, 21eqtr3d 2646 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐶) + (-𝐵 · 𝐶)) = ((𝐴𝐵) · 𝐶))
236, 15, 223eqtr2rd 2651 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  (class class class)co 6527  cc 9791  1c1 9794   + caddc 9796   · cmul 9798  cmin 10118  -cneg 10119  chil 26954   + cva 26955   · csm 26956   cmv 26960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-hfvmul 27040  ax-hvmulass 27042  ax-hvdistr2 27044
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-ltxr 9936  df-sub 10120  df-neg 10121  df-hvsub 27006
This theorem is referenced by:  hvmulcan2  27108
  Copyright terms: Public domain W3C validator