Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubeq0i Structured version   Visualization version   GIF version

Theorem hvsubeq0i 27790
 Description: If the difference between two vectors is zero, they are equal. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvsubeq0i ((𝐴 𝐵) = 0𝐴 = 𝐵)

Proof of Theorem hvsubeq0i
StepHypRef Expression
1 hvnegdi.1 . . . . . 6 𝐴 ∈ ℋ
2 hvnegdi.2 . . . . . 6 𝐵 ∈ ℋ
31, 2hvsubvali 27747 . . . . 5 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
43eqeq1i 2626 . . . 4 ((𝐴 𝐵) = 0 ↔ (𝐴 + (-1 · 𝐵)) = 0)
5 oveq1 6617 . . . 4 ((𝐴 + (-1 · 𝐵)) = 0 → ((𝐴 + (-1 · 𝐵)) + 𝐵) = (0 + 𝐵))
64, 5sylbi 207 . . 3 ((𝐴 𝐵) = 0 → ((𝐴 + (-1 · 𝐵)) + 𝐵) = (0 + 𝐵))
7 neg1cn 11076 . . . . . 6 -1 ∈ ℂ
87, 2hvmulcli 27741 . . . . 5 (-1 · 𝐵) ∈ ℋ
91, 8, 2hvadd32i 27781 . . . 4 ((𝐴 + (-1 · 𝐵)) + 𝐵) = ((𝐴 + 𝐵) + (-1 · 𝐵))
101, 2, 8hvassi 27780 . . . . 5 ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵)))
112hvnegidi 27757 . . . . . . 7 (𝐵 + (-1 · 𝐵)) = 0
1211oveq2i 6621 . . . . . 6 (𝐴 + (𝐵 + (-1 · 𝐵))) = (𝐴 + 0)
13 ax-hvaddid 27731 . . . . . . 7 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
141, 13ax-mp 5 . . . . . 6 (𝐴 + 0) = 𝐴
1512, 14eqtri 2643 . . . . 5 (𝐴 + (𝐵 + (-1 · 𝐵))) = 𝐴
1610, 15eqtri 2643 . . . 4 ((𝐴 + 𝐵) + (-1 · 𝐵)) = 𝐴
179, 16eqtri 2643 . . 3 ((𝐴 + (-1 · 𝐵)) + 𝐵) = 𝐴
182hvaddid2i 27756 . . 3 (0 + 𝐵) = 𝐵
196, 17, 183eqtr3g 2678 . 2 ((𝐴 𝐵) = 0𝐴 = 𝐵)
20 oveq1 6617 . . 3 (𝐴 = 𝐵 → (𝐴 𝐵) = (𝐵 𝐵))
21 hvsubid 27753 . . . 4 (𝐵 ∈ ℋ → (𝐵 𝐵) = 0)
222, 21ax-mp 5 . . 3 (𝐵 𝐵) = 0
2320, 22syl6eq 2671 . 2 (𝐴 = 𝐵 → (𝐴 𝐵) = 0)
2419, 23impbii 199 1 ((𝐴 𝐵) = 0𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1480   ∈ wcel 1987  (class class class)co 6610  1c1 9889  -cneg 10219   ℋchil 27646   +ℎ cva 27647   ·ℎ csm 27648  0ℎc0v 27651   −ℎ cmv 27652 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-hvcom 27728  ax-hvass 27729  ax-hv0cl 27730  ax-hvaddid 27731  ax-hfvmul 27732  ax-hvmulid 27733  ax-hvdistr2 27736  ax-hvmul0 27737 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-ltxr 10031  df-sub 10220  df-neg 10221  df-hvsub 27698 This theorem is referenced by:  hvsubeq0  27795  bcseqi  27847  normsub0i  27862  pjss2i  28409
 Copyright terms: Public domain W3C validator