MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux2i Structured version   Visualization version   GIF version

Theorem infcvgaux2i 15213
Description: Auxiliary theorem for applications of supcvg 15211. (Contributed by NM, 4-Mar-2008.)
Hypotheses
Ref Expression
infcvg.1 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
infcvg.2 (𝑦𝑋𝐴 ∈ ℝ)
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
infcvg.5a 𝑆 = -sup(𝑅, ℝ, < )
infcvg.13 (𝑦 = 𝐶𝐴 = 𝐵)
Assertion
Ref Expression
infcvgaux2i (𝐶𝑋𝑆𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑧,𝑤,𝑅   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑧,𝑤)   𝐶(𝑥,𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑧,𝑤)   𝑍(𝑧,𝑤)

Proof of Theorem infcvgaux2i
StepHypRef Expression
1 infcvg.5a . 2 𝑆 = -sup(𝑅, ℝ, < )
2 eqid 2821 . . . . . 6 -𝐵 = -𝐵
3 infcvg.13 . . . . . . . 8 (𝑦 = 𝐶𝐴 = 𝐵)
43negeqd 10880 . . . . . . 7 (𝑦 = 𝐶 → -𝐴 = -𝐵)
54rspceeqv 3638 . . . . . 6 ((𝐶𝑋 ∧ -𝐵 = -𝐵) → ∃𝑦𝑋 -𝐵 = -𝐴)
62, 5mpan2 689 . . . . 5 (𝐶𝑋 → ∃𝑦𝑋 -𝐵 = -𝐴)
7 negex 10884 . . . . . 6 -𝐵 ∈ V
8 eqeq1 2825 . . . . . . 7 (𝑥 = -𝐵 → (𝑥 = -𝐴 ↔ -𝐵 = -𝐴))
98rexbidv 3297 . . . . . 6 (𝑥 = -𝐵 → (∃𝑦𝑋 𝑥 = -𝐴 ↔ ∃𝑦𝑋 -𝐵 = -𝐴))
10 infcvg.1 . . . . . 6 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
117, 9, 10elab2 3670 . . . . 5 (-𝐵𝑅 ↔ ∃𝑦𝑋 -𝐵 = -𝐴)
126, 11sylibr 236 . . . 4 (𝐶𝑋 → -𝐵𝑅)
13 infcvg.2 . . . . . 6 (𝑦𝑋𝐴 ∈ ℝ)
14 infcvg.3 . . . . . 6 𝑍𝑋
15 infcvg.4 . . . . . 6 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
1610, 13, 14, 15infcvgaux1i 15212 . . . . 5 (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
1716suprubii 11616 . . . 4 (-𝐵𝑅 → -𝐵 ≤ sup(𝑅, ℝ, < ))
1812, 17syl 17 . . 3 (𝐶𝑋 → -𝐵 ≤ sup(𝑅, ℝ, < ))
193eleq1d 2897 . . . . 5 (𝑦 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ))
2019, 13vtoclga 3574 . . . 4 (𝐶𝑋𝐵 ∈ ℝ)
2116suprclii 11615 . . . 4 sup(𝑅, ℝ, < ) ∈ ℝ
22 lenegcon1 11144 . . . 4 ((𝐵 ∈ ℝ ∧ sup(𝑅, ℝ, < ) ∈ ℝ) → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵))
2320, 21, 22sylancl 588 . . 3 (𝐶𝑋 → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵))
2418, 23mpbid 234 . 2 (𝐶𝑋 → -sup(𝑅, ℝ, < ) ≤ 𝐵)
251, 24eqbrtrid 5101 1 (𝐶𝑋𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139   class class class wbr 5066  supcsup 8904  cr 10536   < clt 10675  cle 10676  -cneg 10871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator