MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux2i Structured version   Visualization version   GIF version

Theorem infcvgaux2i 14515
Description: Auxiliary theorem for applications of supcvg 14513. (Contributed by NM, 4-Mar-2008.)
Hypotheses
Ref Expression
infcvg.1 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
infcvg.2 (𝑦𝑋𝐴 ∈ ℝ)
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
infcvg.5a 𝑆 = -sup(𝑅, ℝ, < )
infcvg.13 (𝑦 = 𝐶𝐴 = 𝐵)
Assertion
Ref Expression
infcvgaux2i (𝐶𝑋𝑆𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑧,𝑤,𝑅   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑧,𝑤)   𝐶(𝑥,𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑧,𝑤)   𝑍(𝑧,𝑤)

Proof of Theorem infcvgaux2i
StepHypRef Expression
1 infcvg.5a . 2 𝑆 = -sup(𝑅, ℝ, < )
2 eqid 2621 . . . . . 6 -𝐵 = -𝐵
3 infcvg.13 . . . . . . . . 9 (𝑦 = 𝐶𝐴 = 𝐵)
43negeqd 10219 . . . . . . . 8 (𝑦 = 𝐶 → -𝐴 = -𝐵)
54eqeq2d 2631 . . . . . . 7 (𝑦 = 𝐶 → (-𝐵 = -𝐴 ↔ -𝐵 = -𝐵))
65rspcev 3295 . . . . . 6 ((𝐶𝑋 ∧ -𝐵 = -𝐵) → ∃𝑦𝑋 -𝐵 = -𝐴)
72, 6mpan2 706 . . . . 5 (𝐶𝑋 → ∃𝑦𝑋 -𝐵 = -𝐴)
8 negex 10223 . . . . . 6 -𝐵 ∈ V
9 eqeq1 2625 . . . . . . 7 (𝑥 = -𝐵 → (𝑥 = -𝐴 ↔ -𝐵 = -𝐴))
109rexbidv 3045 . . . . . 6 (𝑥 = -𝐵 → (∃𝑦𝑋 𝑥 = -𝐴 ↔ ∃𝑦𝑋 -𝐵 = -𝐴))
11 infcvg.1 . . . . . 6 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
128, 10, 11elab2 3337 . . . . 5 (-𝐵𝑅 ↔ ∃𝑦𝑋 -𝐵 = -𝐴)
137, 12sylibr 224 . . . 4 (𝐶𝑋 → -𝐵𝑅)
14 infcvg.2 . . . . . 6 (𝑦𝑋𝐴 ∈ ℝ)
15 infcvg.3 . . . . . 6 𝑍𝑋
16 infcvg.4 . . . . . 6 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
1711, 14, 15, 16infcvgaux1i 14514 . . . . 5 (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
1817suprubii 10942 . . . 4 (-𝐵𝑅 → -𝐵 ≤ sup(𝑅, ℝ, < ))
1913, 18syl 17 . . 3 (𝐶𝑋 → -𝐵 ≤ sup(𝑅, ℝ, < ))
203eleq1d 2683 . . . . 5 (𝑦 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ))
2120, 14vtoclga 3258 . . . 4 (𝐶𝑋𝐵 ∈ ℝ)
2217suprclii 10941 . . . 4 sup(𝑅, ℝ, < ) ∈ ℝ
23 lenegcon1 10476 . . . 4 ((𝐵 ∈ ℝ ∧ sup(𝑅, ℝ, < ) ∈ ℝ) → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵))
2421, 22, 23sylancl 693 . . 3 (𝐶𝑋 → (-𝐵 ≤ sup(𝑅, ℝ, < ) ↔ -sup(𝑅, ℝ, < ) ≤ 𝐵))
2519, 24mpbid 222 . 2 (𝐶𝑋 → -sup(𝑅, ℝ, < ) ≤ 𝐵)
261, 25syl5eqbr 4648 1 (𝐶𝑋𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  {cab 2607  wral 2907  wrex 2908   class class class wbr 4613  supcsup 8290  cr 9879   < clt 10018  cle 10019  -cneg 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator