MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isohom Structured version   Visualization version   GIF version

Theorem isohom 16357
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isohom.b 𝐵 = (Base‘𝐶)
isohom.h 𝐻 = (Hom ‘𝐶)
isohom.i 𝐼 = (Iso‘𝐶)
isohom.c (𝜑𝐶 ∈ Cat)
isohom.x (𝜑𝑋𝐵)
isohom.y (𝜑𝑌𝐵)
Assertion
Ref Expression
isohom (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))

Proof of Theorem isohom
StepHypRef Expression
1 isohom.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2621 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 isohom.c . . . 4 (𝜑𝐶 ∈ Cat)
4 isohom.x . . . 4 (𝜑𝑋𝐵)
5 isohom.y . . . 4 (𝜑𝑌𝐵)
6 isohom.i . . . 4 𝐼 = (Iso‘𝐶)
71, 2, 3, 4, 5, 6isoval 16346 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
8 isohom.h . . . . 5 𝐻 = (Hom ‘𝐶)
91, 2, 3, 4, 5, 8invss 16342 . . . 4 (𝜑 → (𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
10 dmss 5283 . . . 4 ((𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
119, 10syl 17 . . 3 (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
127, 11eqsstrd 3618 . 2 (𝜑 → (𝑋𝐼𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
13 dmxpss 5524 . 2 dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ⊆ (𝑋𝐻𝑌)
1412, 13syl6ss 3595 1 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wss 3555   × cxp 5072  dom cdm 5074  cfv 5847  (class class class)co 6604  Basecbs 15781  Hom chom 15873  Catccat 16246  Invcinv 16326  Isociso 16327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-sect 16328  df-inv 16329  df-iso 16330
This theorem is referenced by:  invisoinvl  16371  invcoisoid  16373  isocoinvid  16374  rcaninv  16375  ffthiso  16510  fuciso  16556  initoeu1  16582  initoeu2lem0  16584  initoeu2lem1  16585  initoeu2  16587  termoeu1  16589  nzerooringczr  41357
  Copyright terms: Public domain W3C validator