Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzerooringczr Structured version   Visualization version   GIF version

Theorem nzerooringczr 42551
Description: There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
nzerooringczr.u (𝜑𝑈𝑉)
nzerooringczr.c 𝐶 = (RingCat‘𝑈)
nzerooringczr.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
nzerooringczr.e (𝜑𝑍𝑈)
nzerooringczr.i (𝜑 → ℤring𝑈)
Assertion
Ref Expression
nzerooringczr (𝜑 → (ZeroO‘𝐶) = ∅)

Proof of Theorem nzerooringczr
Dummy variables 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 ((ZeroO‘𝐶) = ∅ → (𝜑 → (ZeroO‘𝐶) = ∅))
2 neq0 4061 . . 3 (¬ (ZeroO‘𝐶) = ∅ ↔ ∃ ∈ (ZeroO‘𝐶))
3 nzerooringczr.u . . . . . . . 8 (𝜑𝑈𝑉)
4 nzerooringczr.c . . . . . . . . 9 𝐶 = (RingCat‘𝑈)
54ringccat 42503 . . . . . . . 8 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . . . . 7 (𝜑𝐶 ∈ Cat)
7 iszeroi 16831 . . . . . . 7 ((𝐶 ∈ Cat ∧ ∈ (ZeroO‘𝐶)) → ( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))))
86, 7sylan 489 . . . . . 6 ((𝜑 ∈ (ZeroO‘𝐶)) → ( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))))
9 nzerooringczr.z . . . . . . . . 9 (𝜑𝑍 ∈ (Ring ∖ NzRing))
10 nzerooringczr.e . . . . . . . . 9 (𝜑𝑍𝑈)
113, 4, 9, 10zrtermoringc 42549 . . . . . . . 8 (𝜑𝑍 ∈ (TermO‘𝐶))
12 nzerooringczr.i . . . . . . . . . 10 (𝜑 → ℤring𝑈)
133, 12, 4irinitoringc 42548 . . . . . . . . 9 (𝜑 → ℤring ∈ (InitO‘𝐶))
146ad2antrr 764 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → 𝐶 ∈ Cat)
15 simplr 809 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ∈ (InitO‘𝐶))
16 simpr 479 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ℤring ∈ (InitO‘𝐶))
1714, 15, 16initoeu1w 16834 . . . . . . . . . . . . . . . 16 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ( ≃𝑐𝐶)ℤring)
186ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝐶 ∈ Cat)
19 simpr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍 ∈ (TermO‘𝐶))
20 simplr 809 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ∈ (TermO‘𝐶))
2118, 19, 20termoeu1w 16841 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍( ≃𝑐𝐶))
22 cictr 16637 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ Cat ∧ 𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → 𝑍( ≃𝑐𝐶)ℤring)
236, 22syl3an1 1496 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → 𝑍( ≃𝑐𝐶)ℤring)
24 eqid 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Iso‘𝐶) = (Iso‘𝐶)
25 eqid 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Base‘𝐶) = (Base‘𝐶)
269eldifad 3715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑍 ∈ Ring)
2710, 26elind 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑍 ∈ (𝑈 ∩ Ring))
284, 25, 3ringcbas 42490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
2927, 28eleqtrrd 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑍 ∈ (Base‘𝐶))
30 zringring 19994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ring ∈ Ring
3130a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℤring ∈ Ring)
3212, 31elind 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
3332, 28eleqtrrd 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ℤring ∈ (Base‘𝐶))
3424, 25, 6, 29, 33cic 16631 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑍( ≃𝑐𝐶)ℤring ↔ ∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring)))
35 n0 4062 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring))
36 eqid 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Hom ‘𝐶) = (Hom ‘𝐶)
3725, 36, 24, 6, 29, 33isohom 16608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring))
38 ssn0 4107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅) → (𝑍(Hom ‘𝐶)ℤring) ≠ ∅)
394, 25, 3, 36, 29, 33ringchom 42492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑍(Hom ‘𝐶)ℤring) = (𝑍 RingHom ℤring))
4039neeq1d 2979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ ↔ (𝑍 RingHom ℤring) ≠ ∅))
41 zringnzr 20003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ring ∈ NzRing
42 nrhmzr 42352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑍 ∈ (Ring ∖ NzRing) ∧ ℤring ∈ NzRing) → (𝑍 RingHom ℤring) = ∅)
439, 41, 42sylancl 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑍 RingHom ℤring) = ∅)
44 eqneqall 2931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑍 RingHom ℤring) = ∅ → ((𝑍 RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑍 RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4640, 45sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4738, 46syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅) → (𝜑 → (ZeroO‘𝐶) = ∅))
4847expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → (𝜑 → (ZeroO‘𝐶) = ∅)))
4948com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅)))
5037, 49mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
5135, 50syl5bir 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring) → (ZeroO‘𝐶) = ∅))
5234, 51sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑍( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))
53523ad2ant1 1125 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → (𝑍( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))
5423, 53mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → (ZeroO‘𝐶) = ∅)
55543exp 1112 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑍( ≃𝑐𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))
5655a1dd 50 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑍( ≃𝑐𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))))
5756ad2antrr 764 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → (𝑍( ≃𝑐𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))))
5821, 57mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))
5958exp31 631 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( ∈ (TermO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))))
6059com34 91 . . . . . . . . . . . . . . . . . 18 (𝜑 → ( ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))))
6160com25 99 . . . . . . . . . . . . . . . . 17 (𝜑 → (( ≃𝑐𝐶)ℤring → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6261ad2antrr 764 . . . . . . . . . . . . . . . 16 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → (( ≃𝑐𝐶)ℤring → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6317, 62mpd 15 . . . . . . . . . . . . . . 15 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅))))
6463ex 449 . . . . . . . . . . . . . 14 ((𝜑 ∈ (InitO‘𝐶)) → (ℤring ∈ (InitO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6564com25 99 . . . . . . . . . . . . 13 ((𝜑 ∈ (InitO‘𝐶)) → ( ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6665expimpd 630 . . . . . . . . . . . 12 (𝜑 → (( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶)) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6766com23 86 . . . . . . . . . . 11 (𝜑 → ( ∈ (Base‘𝐶) → (( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶)) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6867impd 446 . . . . . . . . . 10 (𝜑 → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅))))
6968com24 95 . . . . . . . . 9 (𝜑 → (ℤring ∈ (InitO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))))
7013, 69mpd 15 . . . . . . . 8 (𝜑 → (𝑍 ∈ (TermO‘𝐶) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅)))
7111, 70mpd 15 . . . . . . 7 (𝜑 → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))
7271adantr 472 . . . . . 6 ((𝜑 ∈ (ZeroO‘𝐶)) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))
738, 72mpd 15 . . . . 5 ((𝜑 ∈ (ZeroO‘𝐶)) → (ZeroO‘𝐶) = ∅)
7473expcom 450 . . . 4 ( ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅))
7574exlimiv 1995 . . 3 (∃ ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅))
762, 75sylbi 207 . 2 (¬ (ZeroO‘𝐶) = ∅ → (𝜑 → (ZeroO‘𝐶) = ∅))
771, 76pm2.61i 176 1 (𝜑 → (ZeroO‘𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1620  wex 1841  wcel 2127  wne 2920  cdif 3700  cin 3702  wss 3703  c0 4046   class class class wbr 4792  cfv 6037  (class class class)co 6801  Basecbs 16030  Hom chom 16125  Catccat 16497  Isociso 16578  𝑐 ccic 16627  InitOcinito 16810  TermOctermo 16811  ZeroOczeroo 16812  Ringcrg 18718   RingHom crh 18885  NzRingcnzr 19430  ringzring 19991  RingCatcringc 42482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-addf 10178  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-xnn0 11527  df-z 11541  df-dec 11657  df-uz 11851  df-fz 12491  df-seq 12967  df-hash 13283  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-hom 16139  df-cco 16140  df-0g 16275  df-cat 16501  df-cid 16502  df-homf 16503  df-sect 16579  df-inv 16580  df-iso 16581  df-cic 16628  df-ssc 16642  df-resc 16643  df-subc 16644  df-inito 16813  df-termo 16814  df-zeroo 16815  df-estrc 16935  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-mhm 17507  df-grp 17597  df-minusg 17598  df-mulg 17713  df-subg 17763  df-ghm 17830  df-cmn 18366  df-mgp 18661  df-ur 18673  df-ring 18720  df-cring 18721  df-rnghom 18888  df-subrg 18951  df-nzr 19431  df-cnfld 19920  df-zring 19992  df-ringc 42484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator