MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuciso Structured version   Visualization version   GIF version

Theorem fuciso 17228
Description: A natural transformation is an isomorphism of functors iff all its components are isomorphisms. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fuciso.i 𝐼 = (Iso‘𝑄)
fuciso.j 𝐽 = (Iso‘𝐷)
Assertion
Ref Expression
fuciso (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑁   𝜑,𝑥   𝑥,𝑄

Proof of Theorem fuciso
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fuciso.q . . . . . 6 𝑄 = (𝐶 FuncCat 𝐷)
21fucbas 17213 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
3 fuciso.n . . . . . 6 𝑁 = (𝐶 Nat 𝐷)
41, 3fuchom 17214 . . . . 5 𝑁 = (Hom ‘𝑄)
5 fuciso.i . . . . 5 𝐼 = (Iso‘𝑄)
6 fuciso.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 funcrcl 17116 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
86, 7syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
98simpld 497 . . . . . 6 (𝜑𝐶 ∈ Cat)
108simprd 498 . . . . . 6 (𝜑𝐷 ∈ Cat)
111, 9, 10fuccat 17223 . . . . 5 (𝜑𝑄 ∈ Cat)
12 fuciso.g . . . . 5 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
132, 4, 5, 11, 6, 12isohom 17029 . . . 4 (𝜑 → (𝐹𝐼𝐺) ⊆ (𝐹𝑁𝐺))
1413sselda 3955 . . 3 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → 𝐴 ∈ (𝐹𝑁𝐺))
15 eqid 2821 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2821 . . . . 5 (Inv‘𝐷) = (Inv‘𝐷)
1710ad2antrr 724 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → 𝐷 ∈ Cat)
18 fuciso.b . . . . . . . 8 𝐵 = (Base‘𝐶)
19 relfunc 17115 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
20 1st2ndbr 7727 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2119, 6, 20sylancr 589 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2218, 15, 21funcf1 17119 . . . . . . 7 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
2322adantr 483 . . . . . 6 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (1st𝐹):𝐵⟶(Base‘𝐷))
2423ffvelrnda 6837 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
25 1st2ndbr 7727 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2619, 12, 25sylancr 589 . . . . . . . 8 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
2718, 15, 26funcf1 17119 . . . . . . 7 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
2827adantr 483 . . . . . 6 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (1st𝐺):𝐵⟶(Base‘𝐷))
2928ffvelrnda 6837 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
30 fuciso.j . . . . 5 𝐽 = (Iso‘𝐷)
31 eqid 2821 . . . . . . . . . . . 12 (Inv‘𝑄) = (Inv‘𝑄)
322, 31, 11, 6, 12, 5isoval 17018 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼𝐺) = dom (𝐹(Inv‘𝑄)𝐺))
3332eleq2d 2898 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺)))
342, 31, 11, 6, 12invfun 17017 . . . . . . . . . . 11 (𝜑 → Fun (𝐹(Inv‘𝑄)𝐺))
35 funfvbrb 6807 . . . . . . . . . . 11 (Fun (𝐹(Inv‘𝑄)𝐺) → (𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)))
3634, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)))
3733, 36bitrd 281 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)))
3837biimpa 479 . . . . . . . 8 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴))
391, 18, 3, 6, 12, 31, 16fucinv 17226 . . . . . . . . 9 (𝜑 → (𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))))
4039adantr 483 . . . . . . . 8 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))))
4138, 40mpbid 234 . . . . . . 7 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)))
4241simp3d 1140 . . . . . 6 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → ∀𝑥𝐵 (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))
4342r19.21bi 3208 . . . . 5 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → (𝐴𝑥)(((1st𝐹)‘𝑥)(Inv‘𝐷)((1st𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))
4415, 16, 17, 24, 29, 30, 43inviso1 17019 . . . 4 (((𝜑𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥𝐵) → (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))
4544ralrimiva 3182 . . 3 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))
4614, 45jca 514 . 2 ((𝜑𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))))
4711adantr 483 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝑄 ∈ Cat)
486adantr 483 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐹 ∈ (𝐶 Func 𝐷))
4912adantr 483 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐺 ∈ (𝐶 Func 𝐷))
50 simprl 769 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐴 ∈ (𝐹𝑁𝐺))
5110ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → 𝐷 ∈ Cat)
5222adantr 483 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → (1st𝐹):𝐵⟶(Base‘𝐷))
5352ffvelrnda 6837 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
5427adantr 483 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → (1st𝐺):𝐵⟶(Base‘𝐷))
5554ffvelrnda 6837 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
56 simprr 771 . . . . . 6 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))
57 fveq2 6656 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
58 fveq2 6656 . . . . . . . . 9 (𝑥 = 𝑦 → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑦))
59 fveq2 6656 . . . . . . . . 9 (𝑥 = 𝑦 → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑦))
6058, 59oveq12d 7160 . . . . . . . 8 (𝑥 = 𝑦 → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) = (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
6157, 60eleq12d 2907 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ↔ (𝐴𝑦) ∈ (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))))
6261rspccva 3614 . . . . . 6 ((∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ∧ 𝑦𝐵) → (𝐴𝑦) ∈ (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
6356, 62sylan 582 . . . . 5 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → (𝐴𝑦) ∈ (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
6415, 30, 16, 51, 53, 55, 63invisoinvr 17044 . . . 4 (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) ∧ 𝑦𝐵) → (𝐴𝑦)(((1st𝐹)‘𝑦)(Inv‘𝐷)((1st𝐺)‘𝑦))((((1st𝐹)‘𝑦)(Inv‘𝐷)((1st𝐺)‘𝑦))‘(𝐴𝑦)))
651, 18, 3, 48, 49, 31, 16, 50, 64invfuc 17227 . . 3 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐴(𝐹(Inv‘𝑄)𝐺)(𝑦𝐵 ↦ ((((1st𝐹)‘𝑦)(Inv‘𝐷)((1st𝐺)‘𝑦))‘(𝐴𝑦))))
662, 31, 47, 48, 49, 5, 65inviso1 17019 . 2 ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))) → 𝐴 ∈ (𝐹𝐼𝐺))
6746, 66impbida 799 1 (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138   class class class wbr 5052  cmpt 5132  dom cdm 5541  Rel wrel 5546  Fun wfun 6335  wf 6337  cfv 6341  (class class class)co 7142  1st c1st 7673  2nd c2nd 7674  Basecbs 16466  Catccat 16918  Invcinv 16998  Isociso 16999   Func cfunc 17107   Nat cnat 17194   FuncCat cfuc 17195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-z 11969  df-dec 12086  df-uz 12231  df-fz 12883  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-hom 16572  df-cco 16573  df-cat 16922  df-cid 16923  df-sect 17000  df-inv 17001  df-iso 17002  df-func 17111  df-nat 17196  df-fuc 17197
This theorem is referenced by:  yonffthlem  17515
  Copyright terms: Public domain W3C validator