MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunisuc Structured version   Visualization version   GIF version

Theorem itunisuc 9098
Description: Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunisuc ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunisuc
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frsuc 7393 . . . . . 6 (𝐵 ∈ ω → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)))
2 fvex 6095 . . . . . . 7 ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V
3 unieq 4371 . . . . . . . 8 (𝑎 = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) → 𝑎 = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
4 unieq 4371 . . . . . . . . 9 (𝑦 = 𝑎 𝑦 = 𝑎)
54cbvmptv 4669 . . . . . . . 8 (𝑦 ∈ V ↦ 𝑦) = (𝑎 ∈ V ↦ 𝑎)
62uniex 6825 . . . . . . . 8 ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V
73, 5, 6fvmpt 6173 . . . . . . 7 (((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V → ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
82, 7ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)
91, 8syl6eq 2656 . . . . 5 (𝐵 ∈ ω → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
109adantl 480 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
11 ituni.u . . . . . . 7 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
1211itunifval 9095 . . . . . 6 (𝐴 ∈ V → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
1312fveq1d 6087 . . . . 5 (𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵))
1413adantr 479 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵))
1512fveq1d 6087 . . . . . 6 (𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1615adantr 479 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1716unieqd 4373 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1810, 14, 173eqtr4d 2650 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
19 uni0 4392 . . . . 5 ∅ = ∅
2019eqcomi 2615 . . . 4 ∅ =
2111itunifn 9096 . . . . . . . . . 10 (𝐴 ∈ V → (𝑈𝐴) Fn ω)
22 fndm 5887 . . . . . . . . . 10 ((𝑈𝐴) Fn ω → dom (𝑈𝐴) = ω)
2321, 22syl 17 . . . . . . . . 9 (𝐴 ∈ V → dom (𝑈𝐴) = ω)
2423eleq2d 2669 . . . . . . . 8 (𝐴 ∈ V → (suc 𝐵 ∈ dom (𝑈𝐴) ↔ suc 𝐵 ∈ ω))
25 peano2b 6947 . . . . . . . 8 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
2624, 25syl6bbr 276 . . . . . . 7 (𝐴 ∈ V → (suc 𝐵 ∈ dom (𝑈𝐴) ↔ 𝐵 ∈ ω))
2726notbid 306 . . . . . 6 (𝐴 ∈ V → (¬ suc 𝐵 ∈ dom (𝑈𝐴) ↔ ¬ 𝐵 ∈ ω))
2827biimpar 500 . . . . 5 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ¬ suc 𝐵 ∈ dom (𝑈𝐴))
29 ndmfv 6110 . . . . 5 (¬ suc 𝐵 ∈ dom (𝑈𝐴) → ((𝑈𝐴)‘suc 𝐵) = ∅)
3028, 29syl 17 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ∅)
3123eleq2d 2669 . . . . . . . 8 (𝐴 ∈ V → (𝐵 ∈ dom (𝑈𝐴) ↔ 𝐵 ∈ ω))
3231notbid 306 . . . . . . 7 (𝐴 ∈ V → (¬ 𝐵 ∈ dom (𝑈𝐴) ↔ ¬ 𝐵 ∈ ω))
3332biimpar 500 . . . . . 6 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ¬ 𝐵 ∈ dom (𝑈𝐴))
34 ndmfv 6110 . . . . . 6 𝐵 ∈ dom (𝑈𝐴) → ((𝑈𝐴)‘𝐵) = ∅)
3533, 34syl 17 . . . . 5 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ∅)
3635unieqd 4373 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ∅)
3720, 30, 363eqtr4a 2666 . . 3 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
3818, 37pm2.61dan 827 . 2 (𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
39 0fv 6119 . . . . 5 (∅‘𝐵) = ∅
4039unieqi 4372 . . . 4 (∅‘𝐵) =
41 0fv 6119 . . . 4 (∅‘suc 𝐵) = ∅
4219, 40, 413eqtr4ri 2639 . . 3 (∅‘suc 𝐵) = (∅‘𝐵)
43 fvprc 6079 . . . 4 𝐴 ∈ V → (𝑈𝐴) = ∅)
4443fveq1d 6087 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = (∅‘suc 𝐵))
4543fveq1d 6087 . . . 4 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
4645unieqd 4373 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
4742, 44, 463eqtr4a 2666 . 2 𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
4838, 47pm2.61i 174 1 ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382   = wceq 1474  wcel 1976  Vcvv 3169  c0 3870   cuni 4363  cmpt 4634  dom cdm 5025  cres 5027  suc csuc 5625   Fn wfn 5782  cfv 5787  ωcom 6931  reccrdg 7366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-om 6932  df-wrecs 7268  df-recs 7329  df-rdg 7367
This theorem is referenced by:  itunitc1  9099  itunitc  9100  ituniiun  9101
  Copyright terms: Public domain W3C validator