Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualfvs Structured version   Visualization version   GIF version

Theorem ldualfvs 34924
Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualfvs.f 𝐹 = (LFnl‘𝑊)
ldualfvs.v 𝑉 = (Base‘𝑊)
ldualfvs.r 𝑅 = (Scalar‘𝑊)
ldualfvs.k 𝐾 = (Base‘𝑅)
ldualfvs.t × = (.r𝑅)
ldualfvs.d 𝐷 = (LDual‘𝑊)
ldualfvs.s = ( ·𝑠𝐷)
ldualfvs.w (𝜑𝑊𝑌)
ldualfvs.m · = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘})))
Assertion
Ref Expression
ldualfvs (𝜑 = · )
Distinct variable groups:   𝑓,𝑘,𝐹   𝑓,𝐾,𝑘   × ,𝑓,𝑘   𝑓,𝑉,𝑘   𝑓,𝑊,𝑘
Allowed substitution hints:   𝜑(𝑓,𝑘)   𝐷(𝑓,𝑘)   𝑅(𝑓,𝑘)   (𝑓,𝑘)   · (𝑓,𝑘)   𝑌(𝑓,𝑘)

Proof of Theorem ldualfvs
StepHypRef Expression
1 ldualfvs.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2758 . . . 4 (+g𝑅) = (+g𝑅)
3 eqid 2758 . . . 4 ( ∘𝑓 (+g𝑅) ↾ (𝐹 × 𝐹)) = ( ∘𝑓 (+g𝑅) ↾ (𝐹 × 𝐹))
4 ldualfvs.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualfvs.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualfvs.r . . . 4 𝑅 = (Scalar‘𝑊)
7 ldualfvs.k . . . 4 𝐾 = (Base‘𝑅)
8 ldualfvs.t . . . 4 × = (.r𝑅)
9 eqid 2758 . . . 4 (oppr𝑅) = (oppr𝑅)
10 eqid 2758 . . . 4 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘}))) = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘})))
11 ldualfvs.w . . . 4 (𝜑𝑊𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 34913 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘})))⟩}))
1312fveq2d 6354 . 2 (𝜑 → ( ·𝑠𝐷) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘})))⟩})))
14 ldualfvs.s . 2 = ( ·𝑠𝐷)
15 ldualfvs.m . . 3 · = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘})))
16 fvex 6360 . . . . . 6 (Base‘𝑅) ∈ V
177, 16eqeltri 2833 . . . . 5 𝐾 ∈ V
18 fvex 6360 . . . . . 6 (LFnl‘𝑊) ∈ V
194, 18eqeltri 2833 . . . . 5 𝐹 ∈ V
2017, 19mpt2ex 7413 . . . 4 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘}))) ∈ V
21 eqid 2758 . . . . 5 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘})))⟩})
2221lmodvsca 16221 . . . 4 ((𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘}))) ∈ V → (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘})))⟩})))
2320, 22ax-mp 5 . . 3 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘})))⟩}))
2415, 23eqtri 2780 . 2 · = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓𝑓 × (𝑉 × {𝑘})))⟩}))
2513, 14, 243eqtr4g 2817 1 (𝜑 = · )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2137  Vcvv 3338  cun 3711  {csn 4319  {ctp 4323  cop 4325   × cxp 5262  cres 5266  cfv 6047  (class class class)co 6811  cmpt2 6813  𝑓 cof 7058  ndxcnx 16054  Basecbs 16057  +gcplusg 16141  .rcmulr 16142  Scalarcsca 16144   ·𝑠 cvsca 16145  opprcoppr 18820  LFnlclfn 34845  LDualcld 34911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-of 7060  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-n0 11483  df-z 11568  df-uz 11878  df-fz 12518  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-plusg 16154  df-sca 16157  df-vsca 16158  df-ldual 34912
This theorem is referenced by:  ldualvs  34925
  Copyright terms: Public domain W3C validator