![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualfvs | Structured version Visualization version GIF version |
Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualfvs.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualfvs.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualfvs.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualfvs.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualfvs.t | ⊢ × = (.r‘𝑅) |
ldualfvs.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualfvs.s | ⊢ ∙ = ( ·𝑠 ‘𝐷) |
ldualfvs.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
ldualfvs.m | ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) |
Ref | Expression |
---|---|
ldualfvs | ⊢ (𝜑 → ∙ = · ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2758 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2758 | . . . 4 ⊢ ( ∘𝑓 (+g‘𝑅) ↾ (𝐹 × 𝐹)) = ( ∘𝑓 (+g‘𝑅) ↾ (𝐹 × 𝐹)) | |
4 | ldualfvs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | ldualfvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
6 | ldualfvs.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | ldualfvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
8 | ldualfvs.t | . . . 4 ⊢ × = (.r‘𝑅) | |
9 | eqid 2758 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
10 | eqid 2758 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) | |
11 | ldualfvs.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 34913 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))〉})) |
13 | 12 | fveq2d 6354 | . 2 ⊢ (𝜑 → ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))〉}))) |
14 | ldualfvs.s | . 2 ⊢ ∙ = ( ·𝑠 ‘𝐷) | |
15 | ldualfvs.m | . . 3 ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) | |
16 | fvex 6360 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
17 | 7, 16 | eqeltri 2833 | . . . . 5 ⊢ 𝐾 ∈ V |
18 | fvex 6360 | . . . . . 6 ⊢ (LFnl‘𝑊) ∈ V | |
19 | 4, 18 | eqeltri 2833 | . . . . 5 ⊢ 𝐹 ∈ V |
20 | 17, 19 | mpt2ex 7413 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) ∈ V |
21 | eqid 2758 | . . . . 5 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))〉}) = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))〉}) | |
22 | 21 | lmodvsca 16221 | . . . 4 ⊢ ((𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) ∈ V → (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))〉}))) |
23 | 20, 22 | ax-mp 5 | . . 3 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))〉})) |
24 | 15, 23 | eqtri 2780 | . 2 ⊢ · = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘})))〉})) |
25 | 13, 14, 24 | 3eqtr4g 2817 | 1 ⊢ (𝜑 → ∙ = · ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2137 Vcvv 3338 ∪ cun 3711 {csn 4319 {ctp 4323 〈cop 4325 × cxp 5262 ↾ cres 5266 ‘cfv 6047 (class class class)co 6811 ↦ cmpt2 6813 ∘𝑓 cof 7058 ndxcnx 16054 Basecbs 16057 +gcplusg 16141 .rcmulr 16142 Scalarcsca 16144 ·𝑠 cvsca 16145 opprcoppr 18820 LFnlclfn 34845 LDualcld 34911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-of 7060 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-oadd 7731 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-3 11270 df-4 11271 df-5 11272 df-6 11273 df-n0 11483 df-z 11568 df-uz 11878 df-fz 12518 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-plusg 16154 df-sca 16157 df-vsca 16158 df-ldual 34912 |
This theorem is referenced by: ldualvs 34925 |
Copyright terms: Public domain | W3C validator |