Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3 Structured version   Visualization version   GIF version

Theorem lhpexle3 37163
Description: There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝   𝑍,𝑝

Proof of Theorem lhpexle3
StepHypRef Expression
1 lhpex1.l . . . . 5 = (le‘𝐾)
2 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle2 37161 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
5 3anass 1091 . . . . 5 ((𝑝 𝑊𝑝𝑋𝑝𝑌) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
65rexbii 3247 . . . 4 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
74, 6sylib 220 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
81, 2, 3lhpexle2 37161 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
98adantr 483 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
10 3anass 1091 . . . . . . 7 ((𝑝 𝑊𝑝𝑋𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
1110rexbii 3247 . . . . . 6 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
129, 11sylib 220 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
131, 2, 3lhpexle2 37161 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑍))
14 3anass 1091 . . . . . . . . . . 11 ((𝑝 𝑊𝑝𝑌𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
1514rexbii 3247 . . . . . . . . . 10 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
1613, 15sylib 220 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
17163ad2ant1 1129 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
18 simpl1 1187 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl3l 1224 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑌𝐴)
20 simpl2l 1222 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑍𝐴)
21 simprl 769 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋𝐴)
22 simpl3r 1225 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑌 𝑊)
23 simpl2r 1223 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑍 𝑊)
24 simprr 771 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋 𝑊)
251, 2, 3lhpexle3lem 37162 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑍𝐴𝑋𝐴) ∧ (𝑌 𝑊𝑍 𝑊𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)))
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1389 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)))
27 df-3an 1085 . . . . . . . . . . . 12 ((𝑝𝑌𝑝𝑍𝑝𝑋) ↔ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
2827anbi2i 624 . . . . . . . . . . 11 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)))
29 3anass 1091 . . . . . . . . . . 11 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ (𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)))
3028, 29bitr4i 280 . . . . . . . . . 10 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3130rexbii 3247 . . . . . . . . 9 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3226, 31sylib 220 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3317, 32lhpexle1lem 37158 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
34 an31 646 . . . . . . . . . 10 (((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3534anbi2i 624 . . . . . . . . 9 ((𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)))
36 3anass 1091 . . . . . . . . 9 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)))
3735, 29, 363bitr4i 305 . . . . . . . 8 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3837rexbii 3247 . . . . . . 7 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3933, 38sylib 220 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
40393expa 1114 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
4112, 40lhpexle1lem 37158 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
42 an32 644 . . . . . . 7 (((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4342anbi2i 624 . . . . . 6 ((𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
44 3anass 1091 . . . . . 6 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
4543, 36, 443bitr4i 305 . . . . 5 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4645rexbii 3247 . . . 4 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4741, 46sylib 220 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
487, 47lhpexle1lem 37158 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
49 df-3an 1085 . . . . 5 ((𝑝𝑋𝑝𝑌𝑝𝑍) ↔ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
5049anbi2i 624 . . . 4 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
5144, 50bitr4i 280 . . 3 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
5251rexbii 3247 . 2 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
5348, 52sylib 220 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139   class class class wbr 5066  cfv 6355  lecple 16572  Atomscatm 36414  HLchlt 36501  LHypclh 37135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-lhyp 37139
This theorem is referenced by:  cdlemftr3  37716
  Copyright terms: Public domain W3C validator