Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupub2 Structured version   Visualization version   GIF version

Theorem limsupub2 42142
Description: A extended real valued function, with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
limsupub2.1 𝑗𝜑
limsupub2.2 𝑗𝐹
limsupub2.3 (𝜑𝐴 ⊆ ℝ)
limsupub2.4 (𝜑𝐹:𝐴⟶ℝ*)
limsupub2.5 (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupub2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem limsupub2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsupub2.1 . . . . . . 7 𝑗𝜑
2 nfv 1915 . . . . . . 7 𝑗 𝑥 ∈ ℝ
31, 2nfan 1900 . . . . . 6 𝑗(𝜑𝑥 ∈ ℝ)
4 nfv 1915 . . . . . 6 𝑗 𝑘 ∈ ℝ
53, 4nfan 1900 . . . . 5 𝑗((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
6 limsupub2.4 . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
76ffvelrnda 6851 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
87ad5ant14 756 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ∈ ℝ*)
9 rexr 10687 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
109ad4antlr 731 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*)
11 pnfxr 10695 . . . . . . . . 9 +∞ ∈ ℝ*
1211a1i 11 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → +∞ ∈ ℝ*)
13 simpr 487 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ≤ 𝑥)
14 ltpnf 12516 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 < +∞)
1514ad4antlr 731 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 < +∞)
168, 10, 12, 13, 15xrlelttrd 12554 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) < +∞)
1716ex 415 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 → (𝐹𝑗) < +∞))
1817imim2d 57 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (𝑘𝑗 → (𝐹𝑗) < +∞)))
195, 18ralimdaa 3217 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞)))
2019reximdva 3274 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞)))
2120imp 409 . 2 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
22 limsupub2.2 . . 3 𝑗𝐹
23 limsupub2.3 . . 3 (𝜑𝐴 ⊆ ℝ)
24 limsupub2.5 . . 3 (𝜑 → (lim sup‘𝐹) ≠ +∞)
251, 22, 23, 6, 24limsupub 42034 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2621, 25r19.29a 3289 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wnf 1784  wcel 2114  wnfc 2961  wne 3016  wral 3138  wrex 3139  wss 3936   class class class wbr 5066  wf 6351  cfv 6355  cr 10536  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  lim supclsp 14827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-ico 12745  df-limsup 14828
This theorem is referenced by:  limsupubuz2  42143
  Copyright terms: Public domain W3C validator