MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiclbs Structured version   Visualization version   GIF version

Theorem lmiclbs 20095
Description: Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lmimlbs.j 𝐽 = (LBasis‘𝑆)
lmimlbs.k 𝐾 = (LBasis‘𝑇)
Assertion
Ref Expression
lmiclbs (𝑆𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))

Proof of Theorem lmiclbs
Dummy variables 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brlmic 18987 . . 3 (𝑆𝑚 𝑇 ↔ (𝑆 LMIso 𝑇) ≠ ∅)
2 n0 3907 . . 3 ((𝑆 LMIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇))
31, 2bitri 264 . 2 (𝑆𝑚 𝑇 ↔ ∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇))
4 n0 3907 . . . 4 (𝐽 ≠ ∅ ↔ ∃𝑏 𝑏𝐽)
5 lmimlbs.j . . . . . . . 8 𝐽 = (LBasis‘𝑆)
6 lmimlbs.k . . . . . . . 8 𝐾 = (LBasis‘𝑇)
75, 6lmimlbs 20094 . . . . . . 7 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏𝐽) → (𝑓𝑏) ∈ 𝐾)
8 ne0i 3897 . . . . . . 7 ((𝑓𝑏) ∈ 𝐾𝐾 ≠ ∅)
97, 8syl 17 . . . . . 6 ((𝑓 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏𝐽) → 𝐾 ≠ ∅)
109ex 450 . . . . 5 (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝑏𝐽𝐾 ≠ ∅))
1110exlimdv 1858 . . . 4 (𝑓 ∈ (𝑆 LMIso 𝑇) → (∃𝑏 𝑏𝐽𝐾 ≠ ∅))
124, 11syl5bi 232 . . 3 (𝑓 ∈ (𝑆 LMIso 𝑇) → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))
1312exlimiv 1855 . 2 (∃𝑓 𝑓 ∈ (𝑆 LMIso 𝑇) → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))
143, 13sylbi 207 1 (𝑆𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  c0 3891   class class class wbr 4613  cima 5077  cfv 5847  (class class class)co 6604   LMIso clmim 18939  𝑚 clmic 18940  LBasisclbs 18993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-ghm 17579  df-mgp 18411  df-ur 18423  df-ring 18470  df-lmod 18786  df-lss 18852  df-lsp 18891  df-lmhm 18941  df-lmim 18942  df-lmic 18943  df-lbs 18994  df-lindf 20064  df-linds 20065
This theorem is referenced by:  lmisfree  20100
  Copyright terms: Public domain W3C validator