MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbff Structured version   Visualization version   GIF version

Theorem mbff 23145
Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbff (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)

Proof of Theorem mbff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ismbf1 23144 . . 3 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
21simplbi 474 . 2 (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ))
3 cnex 9874 . . . 4 ℂ ∈ V
4 reex 9884 . . . 4 ℝ ∈ V
53, 4elpm2 7753 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
65simplbi 474 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
72, 6syl 17 1 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 1976  wral 2895  wss 3539  ccnv 5027  dom cdm 5028  ran crn 5029  cima 5031  ccom 5032  wf 5786  (class class class)co 6527  pm cpm 7723  cc 9791  cr 9792  (,)cioo 12005  cre 13634  cim 13635  volcvol 22984  MblFncmbf 23134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-pm 7725  df-mbf 23139
This theorem is referenced by:  mbfdm  23146  mbfmptcl  23155  mbfres  23162  mbfimaopnlem  23173  mbfadd  23179  mbfsub  23180  mbfmul  23244  iblcnlem  23306  bddmulibl  23356  bddibl  23357  bddiblnc  32474  mbfresmf  39450
  Copyright terms: Public domain W3C validator