MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfzshft Structured version   Visualization version   GIF version

Theorem mptfzshft 15133
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. Formerly part of proof for fsumshft 15135. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
mptfzshft.1 (𝜑𝐾 ∈ ℤ)
mptfzshft.2 (𝜑𝑀 ∈ ℤ)
mptfzshft.3 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
mptfzshft (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
Distinct variable groups:   𝑗,𝐾   𝑗,𝑀   𝑗,𝑁   𝜑,𝑗

Proof of Theorem mptfzshft
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ovex 7189 . . . 4 (𝑗𝐾) ∈ V
2 eqid 2821 . . . 4 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) = (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾))
31, 2fnmpti 6491 . . 3 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾))
43a1i 11 . 2 (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
5 ovex 7189 . . . 4 (𝑘 + 𝐾) ∈ V
6 eqid 2821 . . . 4 (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) = (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾))
75, 6fnmpti 6491 . . 3 (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) Fn (𝑀...𝑁)
8 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 = (𝑗𝐾))
98oveq1d 7171 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 + 𝐾) = ((𝑗𝐾) + 𝐾))
10 elfzelz 12909 . . . . . . . . . . . 12 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑗 ∈ ℤ)
1110ad2antrl 726 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 ∈ ℤ)
12 mptfzshft.1 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℤ)
1312adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝐾 ∈ ℤ)
14 zcn 11987 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
15 zcn 11987 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
16 npcan 10895 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑗𝐾) + 𝐾) = 𝑗)
1714, 15, 16syl2an 597 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑗𝐾) + 𝐾) = 𝑗)
1811, 13, 17syl2anc 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → ((𝑗𝐾) + 𝐾) = 𝑗)
199, 18eqtr2d 2857 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 = (𝑘 + 𝐾))
20 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2119, 20eqeltrrd 2914 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
22 mptfzshft.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
2322adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑀 ∈ ℤ)
24 mptfzshft.3 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
2524adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑁 ∈ ℤ)
2611, 13zsubcld 12093 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑗𝐾) ∈ ℤ)
278, 26eqeltrd 2913 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 ∈ ℤ)
28 fzaddel 12942 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
2923, 25, 27, 13, 28syl22anc 836 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3021, 29mpbird 259 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 ∈ (𝑀...𝑁))
3130, 19jca 514 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾)))
32 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 = (𝑘 + 𝐾))
33 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ (𝑀...𝑁))
3422adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑀 ∈ ℤ)
3524adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑁 ∈ ℤ)
36 elfzelz 12909 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
3736ad2antrl 726 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ ℤ)
3812adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝐾 ∈ ℤ)
3934, 35, 37, 38, 28syl22anc 836 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
4033, 39mpbid 234 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4132, 40eqeltrd 2913 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4232oveq1d 7171 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗𝐾) = ((𝑘 + 𝐾) − 𝐾))
43 zcn 11987 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
44 pncan 10892 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4543, 15, 44syl2an 597 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4637, 38, 45syl2anc 586 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4742, 46eqtr2d 2857 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 = (𝑗𝐾))
4841, 47jca 514 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾)))
4931, 48impbida 799 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))))
5049mptcnv 5998 . . . 4 (𝜑(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) = (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)))
5150fneq1d 6446 . . 3 (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁) ↔ (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) Fn (𝑀...𝑁)))
527, 51mpbiri 260 . 2 (𝜑(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁))
53 dff1o4 6623 . 2 ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁) ↔ ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁)))
544, 52, 53sylanbrc 585 1 (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cmpt 5146  ccnv 5554   Fn wfn 6350  1-1-ontowf1o 6354  (class class class)co 7156  cc 10535   + caddc 10540  cmin 10870  cz 11982  ...cfz 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894
This theorem is referenced by:  fsumshft  15135  fprodshft  15330  gsummptshft  19056
  Copyright terms: Public domain W3C validator