Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbupgruvtxres Structured version   Visualization version   GIF version

Theorem nbupgruvtxres 26189
 Description: The neighborhood of a universal vertex in a restricted pseudograph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
nbupgruvtxres.v 𝑉 = (Vtx‘𝐺)
nbupgruvtxres.e 𝐸 = (Edg‘𝐺)
nbupgruvtxres.f 𝐹 = {𝑒𝐸𝑁𝑒}
nbupgruvtxres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
nbupgruvtxres (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾})))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐾   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem nbupgruvtxres
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nbupgruvtxres.s . . . . . . 7 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
2 opex 4898 . . . . . . 7 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
31, 2eqeltri 2700 . . . . . 6 𝑆 ∈ V
4 eqid 2626 . . . . . . 7 (Vtx‘𝑆) = (Vtx‘𝑆)
54nbgrssovtx 26141 . . . . . 6 (𝑆 ∈ V → (𝑆 NeighbVtx 𝐾) ⊆ ((Vtx‘𝑆) ∖ {𝐾}))
63, 5mp1i 13 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑆 NeighbVtx 𝐾) ⊆ ((Vtx‘𝑆) ∖ {𝐾}))
7 difpr 4308 . . . . . 6 (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})
8 nbupgruvtxres.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
9 nbupgruvtxres.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
10 nbupgruvtxres.f . . . . . . . . . 10 𝐹 = {𝑒𝐸𝑁𝑒}
118, 9, 10, 1upgrres1lem2 26085 . . . . . . . . 9 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
1211eqcomi 2635 . . . . . . . 8 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
1312a1i 11 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑉 ∖ {𝑁}) = (Vtx‘𝑆))
1413difeq1d 3710 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝑉 ∖ {𝑁}) ∖ {𝐾}) = ((Vtx‘𝑆) ∖ {𝐾}))
157, 14syl5eq 2672 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑉 ∖ {𝑁, 𝐾}) = ((Vtx‘𝑆) ∖ {𝐾}))
166, 15sseqtr4d 3626 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → (𝑆 NeighbVtx 𝐾) ⊆ (𝑉 ∖ {𝑁, 𝐾}))
1716adantr 481 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) ⊆ (𝑉 ∖ {𝑁, 𝐾}))
18 simpl 473 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})))
1918anim1i 591 . . . . . . 7 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})))
20 df-3an 1038 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) ↔ (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})))
2119, 20sylibr 224 . . . . . 6 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})))
22 dif32 3872 . . . . . . . . . . . . 13 ((𝑉 ∖ {𝑁}) ∖ {𝐾}) = ((𝑉 ∖ {𝐾}) ∖ {𝑁})
237, 22eqtri 2648 . . . . . . . . . . . 12 (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝐾}) ∖ {𝑁})
2423eleq2i 2696 . . . . . . . . . . 11 (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ 𝑛 ∈ ((𝑉 ∖ {𝐾}) ∖ {𝑁}))
25 eldifsn 4292 . . . . . . . . . . 11 (𝑛 ∈ ((𝑉 ∖ {𝐾}) ∖ {𝑁}) ↔ (𝑛 ∈ (𝑉 ∖ {𝐾}) ∧ 𝑛𝑁))
2624, 25bitri 264 . . . . . . . . . 10 (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ (𝑛 ∈ (𝑉 ∖ {𝐾}) ∧ 𝑛𝑁))
2726simplbi 476 . . . . . . . . 9 (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑛 ∈ (𝑉 ∖ {𝐾}))
28 eleq2 2693 . . . . . . . . 9 ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑛 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝑛 ∈ (𝑉 ∖ {𝐾})))
2927, 28syl5ibr 236 . . . . . . . 8 ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑛 ∈ (𝐺 NeighbVtx 𝐾)))
3029adantl 482 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑛 ∈ (𝐺 NeighbVtx 𝐾)))
3130imp 445 . . . . . 6 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑛 ∈ (𝐺 NeighbVtx 𝐾))
328, 9, 10, 1nbupgrres 26147 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑛 ∈ (𝐺 NeighbVtx 𝐾) → 𝑛 ∈ (𝑆 NeighbVtx 𝐾)))
3321, 31, 32sylc 65 . . . . 5 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑛 ∈ (𝑆 NeighbVtx 𝐾))
3433ralrimiva 2965 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → ∀𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})𝑛 ∈ (𝑆 NeighbVtx 𝐾))
35 dfss3 3578 . . . 4 ((𝑉 ∖ {𝑁, 𝐾}) ⊆ (𝑆 NeighbVtx 𝐾) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑁, 𝐾})𝑛 ∈ (𝑆 NeighbVtx 𝐾))
3634, 35sylibr 224 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑉 ∖ {𝑁, 𝐾}) ⊆ (𝑆 NeighbVtx 𝐾))
3717, 36eqssd 3605 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾})) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾}))
3837ex 450 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 NeighbVtx 𝐾) = (𝑉 ∖ {𝐾}) → (𝑆 NeighbVtx 𝐾) = (𝑉 ∖ {𝑁, 𝐾})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1992   ≠ wne 2796   ∉ wnel 2899  ∀wral 2912  {crab 2916  Vcvv 3191   ∖ cdif 3557   ⊆ wss 3560  {csn 4153  {cpr 4155  ⟨cop 4159   I cid 4989   ↾ cres 5081  ‘cfv 5850  (class class class)co 6605  Vtxcvtx 25769  Edgcedg 25834   UPGraph cupgr 25866   NeighbVtx cnbgr 26105 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-hash 13055  df-vtx 25771  df-iedg 25772  df-edg 25835  df-upgr 25868  df-nbgr 26109 This theorem is referenced by:  uvtxupgrres  26190
 Copyright terms: Public domain W3C validator