MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntropn Structured version   Visualization version   GIF version

Theorem ntropn 20763
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntropn ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)

Proof of Theorem ntropn
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21ntrval 20750 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
3 inss1 3811 . . . 4 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽
4 uniopn 20627 . . . 4 ((𝐽 ∈ Top ∧ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽) → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
53, 4mpan2 706 . . 3 (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
65adantr 481 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
72, 6eqeltrd 2698 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cin 3554  wss 3555  𝒫 cpw 4130   cuni 4402  cfv 5847  Topctop 20617  intcnt 20731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-top 20621  df-ntr 20734
This theorem is referenced by:  ntrval2  20765  ntrss3  20774  ntrin  20775  cmclsopn  20776  cmntrcld  20777  isopn3  20780  ntridm  20782  neiint  20818  topssnei  20838  maxlp  20861  restntr  20896  iscnp4  20977  cnntri  20985  cnprest  21003  llycmpkgen2  21263  xkococnlem  21372  flimopn  21689  fclsneii  21731  fcfnei  21749  subgntr  21820  iccntr  22532  rectbntr0  22543  bcthlem5  23033  bcth3  23036  limcflf  23551  perfdvf  23573  ubthlem1  27575  cvmlift2lem12  31004  opnregcld  31967  ntrrn  37902
  Copyright terms: Public domain W3C validator