MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oarec Structured version   Visualization version   GIF version

Theorem oarec 7506
Description: Recursive definition of ordinal addition. Exercise 25 of [Enderton] p. 240. (Contributed by NM, 26-Dec-2004.) (Revised by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
oarec ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oarec
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6535 . . . 4 (𝑧 = ∅ → (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 ∅))
2 mpteq1 4659 . . . . . . . 8 (𝑧 = ∅ → (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = (𝑥 ∈ ∅ ↦ (𝐴 +𝑜 𝑥)))
3 mpt0 5920 . . . . . . . 8 (𝑥 ∈ ∅ ↦ (𝐴 +𝑜 𝑥)) = ∅
42, 3syl6eq 2659 . . . . . . 7 (𝑧 = ∅ → (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = ∅)
54rneqd 5261 . . . . . 6 (𝑧 = ∅ → ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = ran ∅)
6 rn0 5285 . . . . . 6 ran ∅ = ∅
75, 6syl6eq 2659 . . . . 5 (𝑧 = ∅ → ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = ∅)
87uneq2d 3728 . . . 4 (𝑧 = ∅ → (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))) = (𝐴 ∪ ∅))
91, 8eqeq12d 2624 . . 3 (𝑧 = ∅ → ((𝐴 +𝑜 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))) ↔ (𝐴 +𝑜 ∅) = (𝐴 ∪ ∅)))
10 oveq2 6535 . . . 4 (𝑧 = 𝑤 → (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑤))
11 mpteq1 4659 . . . . . 6 (𝑧 = 𝑤 → (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)))
1211rneqd 5261 . . . . 5 (𝑧 = 𝑤 → ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)))
1312uneq2d 3728 . . . 4 (𝑧 = 𝑤 → (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))))
1410, 13eqeq12d 2624 . . 3 (𝑧 = 𝑤 → ((𝐴 +𝑜 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))) ↔ (𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)))))
15 oveq2 6535 . . . 4 (𝑧 = suc 𝑤 → (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 suc 𝑤))
16 mpteq1 4659 . . . . . 6 (𝑧 = suc 𝑤 → (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥)))
1716rneqd 5261 . . . . 5 (𝑧 = suc 𝑤 → ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥)))
1817uneq2d 3728 . . . 4 (𝑧 = suc 𝑤 → (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥))))
1915, 18eqeq12d 2624 . . 3 (𝑧 = suc 𝑤 → ((𝐴 +𝑜 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))) ↔ (𝐴 +𝑜 suc 𝑤) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥)))))
20 oveq2 6535 . . . 4 (𝑧 = 𝐵 → (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝐵))
21 mpteq1 4659 . . . . . 6 (𝑧 = 𝐵 → (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
2221rneqd 5261 . . . . 5 (𝑧 = 𝐵 → ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
2322uneq2d 3728 . . . 4 (𝑧 = 𝐵 → (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))))
2420, 23eqeq12d 2624 . . 3 (𝑧 = 𝐵 → ((𝐴 +𝑜 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))) ↔ (𝐴 +𝑜 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))))
25 oa0 7460 . . . 4 (𝐴 ∈ On → (𝐴 +𝑜 ∅) = 𝐴)
26 un0 3918 . . . 4 (𝐴 ∪ ∅) = 𝐴
2725, 26syl6eqr 2661 . . 3 (𝐴 ∈ On → (𝐴 +𝑜 ∅) = (𝐴 ∪ ∅))
28 uneq1 3721 . . . . . 6 ((𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) → ((𝐴 +𝑜 𝑤) ∪ {(𝐴 +𝑜 𝑤)}) = ((𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) ∪ {(𝐴 +𝑜 𝑤)}))
29 unass 3731 . . . . . . 7 ((𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) ∪ {(𝐴 +𝑜 𝑤)}) = (𝐴 ∪ (ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ∪ {(𝐴 +𝑜 𝑤)}))
30 rexun 3754 . . . . . . . . . . 11 (∃𝑥 ∈ (𝑤 ∪ {𝑤})𝑦 = (𝐴 +𝑜 𝑥) ↔ (∃𝑥𝑤 𝑦 = (𝐴 +𝑜 𝑥) ∨ ∃𝑥 ∈ {𝑤}𝑦 = (𝐴 +𝑜 𝑥)))
31 df-suc 5632 . . . . . . . . . . . 12 suc 𝑤 = (𝑤 ∪ {𝑤})
3231rexeqi 3119 . . . . . . . . . . 11 (∃𝑥 ∈ suc 𝑤𝑦 = (𝐴 +𝑜 𝑥) ↔ ∃𝑥 ∈ (𝑤 ∪ {𝑤})𝑦 = (𝐴 +𝑜 𝑥))
33 vex 3175 . . . . . . . . . . . . 13 𝑦 ∈ V
34 eqid 2609 . . . . . . . . . . . . . 14 (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) = (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))
3534elrnmpt 5280 . . . . . . . . . . . . 13 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ↔ ∃𝑥𝑤 𝑦 = (𝐴 +𝑜 𝑥)))
3633, 35ax-mp 5 . . . . . . . . . . . 12 (𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ↔ ∃𝑥𝑤 𝑦 = (𝐴 +𝑜 𝑥))
37 velsn 4140 . . . . . . . . . . . . 13 (𝑦 ∈ {(𝐴 +𝑜 𝑤)} ↔ 𝑦 = (𝐴 +𝑜 𝑤))
38 vex 3175 . . . . . . . . . . . . . 14 𝑤 ∈ V
39 oveq2 6535 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝑤))
4039eqeq2d 2619 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑦 = (𝐴 +𝑜 𝑥) ↔ 𝑦 = (𝐴 +𝑜 𝑤)))
4138, 40rexsn 4169 . . . . . . . . . . . . 13 (∃𝑥 ∈ {𝑤}𝑦 = (𝐴 +𝑜 𝑥) ↔ 𝑦 = (𝐴 +𝑜 𝑤))
4237, 41bitr4i 265 . . . . . . . . . . . 12 (𝑦 ∈ {(𝐴 +𝑜 𝑤)} ↔ ∃𝑥 ∈ {𝑤}𝑦 = (𝐴 +𝑜 𝑥))
4336, 42orbi12i 541 . . . . . . . . . . 11 ((𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ∨ 𝑦 ∈ {(𝐴 +𝑜 𝑤)}) ↔ (∃𝑥𝑤 𝑦 = (𝐴 +𝑜 𝑥) ∨ ∃𝑥 ∈ {𝑤}𝑦 = (𝐴 +𝑜 𝑥)))
4430, 32, 433bitr4i 290 . . . . . . . . . 10 (∃𝑥 ∈ suc 𝑤𝑦 = (𝐴 +𝑜 𝑥) ↔ (𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ∨ 𝑦 ∈ {(𝐴 +𝑜 𝑤)}))
45 eqid 2609 . . . . . . . . . . 11 (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥)) = (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥))
46 ovex 6555 . . . . . . . . . . 11 (𝐴 +𝑜 𝑥) ∈ V
4745, 46elrnmpti 5284 . . . . . . . . . 10 (𝑦 ∈ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥)) ↔ ∃𝑥 ∈ suc 𝑤𝑦 = (𝐴 +𝑜 𝑥))
48 elun 3714 . . . . . . . . . 10 (𝑦 ∈ (ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ∪ {(𝐴 +𝑜 𝑤)}) ↔ (𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ∨ 𝑦 ∈ {(𝐴 +𝑜 𝑤)}))
4944, 47, 483bitr4i 290 . . . . . . . . 9 (𝑦 ∈ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥)) ↔ 𝑦 ∈ (ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ∪ {(𝐴 +𝑜 𝑤)}))
5049eqriv 2606 . . . . . . . 8 ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥)) = (ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ∪ {(𝐴 +𝑜 𝑤)})
5150uneq2i 3725 . . . . . . 7 (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥))) = (𝐴 ∪ (ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ∪ {(𝐴 +𝑜 𝑤)}))
5229, 51eqtr4i 2634 . . . . . 6 ((𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) ∪ {(𝐴 +𝑜 𝑤)}) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥)))
5328, 52syl6eq 2659 . . . . 5 ((𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) → ((𝐴 +𝑜 𝑤) ∪ {(𝐴 +𝑜 𝑤)}) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥))))
54 oasuc 7468 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑤 ∈ On) → (𝐴 +𝑜 suc 𝑤) = suc (𝐴 +𝑜 𝑤))
55 df-suc 5632 . . . . . . 7 suc (𝐴 +𝑜 𝑤) = ((𝐴 +𝑜 𝑤) ∪ {(𝐴 +𝑜 𝑤)})
5654, 55syl6eq 2659 . . . . . 6 ((𝐴 ∈ On ∧ 𝑤 ∈ On) → (𝐴 +𝑜 suc 𝑤) = ((𝐴 +𝑜 𝑤) ∪ {(𝐴 +𝑜 𝑤)}))
5756eqeq1d 2611 . . . . 5 ((𝐴 ∈ On ∧ 𝑤 ∈ On) → ((𝐴 +𝑜 suc 𝑤) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥))) ↔ ((𝐴 +𝑜 𝑤) ∪ {(𝐴 +𝑜 𝑤)}) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥)))))
5853, 57syl5ibr 234 . . . 4 ((𝐴 ∈ On ∧ 𝑤 ∈ On) → ((𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) → (𝐴 +𝑜 suc 𝑤) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥)))))
5958expcom 449 . . 3 (𝑤 ∈ On → (𝐴 ∈ On → ((𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) → (𝐴 +𝑜 suc 𝑤) = (𝐴 ∪ ran (𝑥 ∈ suc 𝑤 ↦ (𝐴 +𝑜 𝑥))))))
60 vex 3175 . . . . . . . 8 𝑧 ∈ V
61 oalim 7476 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝑧 ∈ V ∧ Lim 𝑧)) → (𝐴 +𝑜 𝑧) = 𝑤𝑧 (𝐴 +𝑜 𝑤))
6260, 61mpanr1 714 . . . . . . 7 ((𝐴 ∈ On ∧ Lim 𝑧) → (𝐴 +𝑜 𝑧) = 𝑤𝑧 (𝐴 +𝑜 𝑤))
6362ancoms 467 . . . . . 6 ((Lim 𝑧𝐴 ∈ On) → (𝐴 +𝑜 𝑧) = 𝑤𝑧 (𝐴 +𝑜 𝑤))
6463adantr 479 . . . . 5 (((Lim 𝑧𝐴 ∈ On) ∧ ∀𝑤𝑧 (𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)))) → (𝐴 +𝑜 𝑧) = 𝑤𝑧 (𝐴 +𝑜 𝑤))
65 iuneq2 4467 . . . . . 6 (∀𝑤𝑧 (𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) → 𝑤𝑧 (𝐴 +𝑜 𝑤) = 𝑤𝑧 (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))))
6665adantl 480 . . . . 5 (((Lim 𝑧𝐴 ∈ On) ∧ ∀𝑤𝑧 (𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)))) → 𝑤𝑧 (𝐴 +𝑜 𝑤) = 𝑤𝑧 (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))))
67 iunun 4534 . . . . . . 7 𝑤𝑧 (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) = ( 𝑤𝑧 𝐴 𝑤𝑧 ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)))
68 0ellim 5690 . . . . . . . . 9 (Lim 𝑧 → ∅ ∈ 𝑧)
69 ne0i 3879 . . . . . . . . 9 (∅ ∈ 𝑧𝑧 ≠ ∅)
70 iunconst 4459 . . . . . . . . 9 (𝑧 ≠ ∅ → 𝑤𝑧 𝐴 = 𝐴)
7168, 69, 703syl 18 . . . . . . . 8 (Lim 𝑧 𝑤𝑧 𝐴 = 𝐴)
72 limuni 5688 . . . . . . . . . . . 12 (Lim 𝑧𝑧 = 𝑧)
7372rexeqdv 3121 . . . . . . . . . . 11 (Lim 𝑧 → (∃𝑥𝑧 𝑦 = (𝐴 +𝑜 𝑥) ↔ ∃𝑥 𝑧𝑦 = (𝐴 +𝑜 𝑥)))
74 df-rex 2901 . . . . . . . . . . . . . 14 (∃𝑥𝑤 𝑦 = (𝐴 +𝑜 𝑥) ↔ ∃𝑥(𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)))
7536, 74bitri 262 . . . . . . . . . . . . 13 (𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ↔ ∃𝑥(𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)))
7675rexbii 3022 . . . . . . . . . . . 12 (∃𝑤𝑧 𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ↔ ∃𝑤𝑧𝑥(𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)))
77 eluni2 4370 . . . . . . . . . . . . . . . 16 (𝑥 𝑧 ↔ ∃𝑤𝑧 𝑥𝑤)
7877anbi1i 726 . . . . . . . . . . . . . . 15 ((𝑥 𝑧𝑦 = (𝐴 +𝑜 𝑥)) ↔ (∃𝑤𝑧 𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)))
79 r19.41v 3069 . . . . . . . . . . . . . . 15 (∃𝑤𝑧 (𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)) ↔ (∃𝑤𝑧 𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)))
8078, 79bitr4i 265 . . . . . . . . . . . . . 14 ((𝑥 𝑧𝑦 = (𝐴 +𝑜 𝑥)) ↔ ∃𝑤𝑧 (𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)))
8180exbii 1763 . . . . . . . . . . . . 13 (∃𝑥(𝑥 𝑧𝑦 = (𝐴 +𝑜 𝑥)) ↔ ∃𝑥𝑤𝑧 (𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)))
82 df-rex 2901 . . . . . . . . . . . . 13 (∃𝑥 𝑧𝑦 = (𝐴 +𝑜 𝑥) ↔ ∃𝑥(𝑥 𝑧𝑦 = (𝐴 +𝑜 𝑥)))
83 rexcom4 3197 . . . . . . . . . . . . 13 (∃𝑤𝑧𝑥(𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)) ↔ ∃𝑥𝑤𝑧 (𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)))
8481, 82, 833bitr4i 290 . . . . . . . . . . . 12 (∃𝑥 𝑧𝑦 = (𝐴 +𝑜 𝑥) ↔ ∃𝑤𝑧𝑥(𝑥𝑤𝑦 = (𝐴 +𝑜 𝑥)))
8576, 84bitr4i 265 . . . . . . . . . . 11 (∃𝑤𝑧 𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ↔ ∃𝑥 𝑧𝑦 = (𝐴 +𝑜 𝑥))
8673, 85syl6rbbr 277 . . . . . . . . . 10 (Lim 𝑧 → (∃𝑤𝑧 𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ↔ ∃𝑥𝑧 𝑦 = (𝐴 +𝑜 𝑥)))
87 eliun 4454 . . . . . . . . . 10 (𝑦 𝑤𝑧 ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ↔ ∃𝑤𝑧 𝑦 ∈ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)))
88 eqid 2609 . . . . . . . . . . 11 (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) = (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))
8988, 46elrnmpti 5284 . . . . . . . . . 10 (𝑦 ∈ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)) ↔ ∃𝑥𝑧 𝑦 = (𝐴 +𝑜 𝑥))
9086, 87, 893bitr4g 301 . . . . . . . . 9 (Lim 𝑧 → (𝑦 𝑤𝑧 ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) ↔ 𝑦 ∈ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))))
9190eqrdv 2607 . . . . . . . 8 (Lim 𝑧 𝑤𝑧 ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)) = ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥)))
9271, 91uneq12d 3729 . . . . . . 7 (Lim 𝑧 → ( 𝑤𝑧 𝐴 𝑤𝑧 ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))))
9367, 92syl5eq 2655 . . . . . 6 (Lim 𝑧 𝑤𝑧 (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))))
9493ad2antrr 757 . . . . 5 (((Lim 𝑧𝐴 ∈ On) ∧ ∀𝑤𝑧 (𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)))) → 𝑤𝑧 (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))))
9564, 66, 943eqtrd 2647 . . . 4 (((Lim 𝑧𝐴 ∈ On) ∧ ∀𝑤𝑧 (𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥)))) → (𝐴 +𝑜 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))))
9695exp31 627 . . 3 (Lim 𝑧 → (𝐴 ∈ On → (∀𝑤𝑧 (𝐴 +𝑜 𝑤) = (𝐴 ∪ ran (𝑥𝑤 ↦ (𝐴 +𝑜 𝑥))) → (𝐴 +𝑜 𝑧) = (𝐴 ∪ ran (𝑥𝑧 ↦ (𝐴 +𝑜 𝑥))))))
979, 14, 19, 24, 27, 59, 96tfinds3 6933 . 2 (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 +𝑜 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))))
9897impcom 444 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wex 1694  wcel 1976  wne 2779  wral 2895  wrex 2896  Vcvv 3172  cun 3537  c0 3873  {csn 4124   cuni 4366   ciun 4449  cmpt 4637  ran crn 5029  Oncon0 5626  Lim wlim 5627  suc csuc 5628  (class class class)co 6527   +𝑜 coa 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-oadd 7428
This theorem is referenced by:  oacomf1o  7509  onacda  8879
  Copyright terms: Public domain W3C validator