MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfvalrn Structured version   Visualization version   GIF version

Theorem pmtrprfvalrn 17889
Description: The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pmtrprfvalrn ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}

Proof of Theorem pmtrprfvalrn
Dummy variables 𝑡 𝑝 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrprfval 17888 . . 3 (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
21rneqi 5341 . 2 ran (pmTrsp‘{1, 2}) = ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
3 eqid 2620 . . . 4 (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
43rnmpt 5360 . . 3 ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))}
5 1ex 10020 . . . . . . . 8 1 ∈ V
6 id 22 . . . . . . . . . 10 (1 ∈ V → 1 ∈ V)
7 2nn 11170 . . . . . . . . . . 11 2 ∈ ℕ
87a1i 11 . . . . . . . . . 10 (1 ∈ V → 2 ∈ ℕ)
9 iftrue 4083 . . . . . . . . . . 11 (𝑧 = 1 → if(𝑧 = 1, 2, 1) = 2)
109adantl 482 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑧 = 1) → if(𝑧 = 1, 2, 1) = 2)
11 1ne2 11225 . . . . . . . . . . . . . 14 1 ≠ 2
1211nesymi 2848 . . . . . . . . . . . . 13 ¬ 2 = 1
13 eqeq1 2624 . . . . . . . . . . . . 13 (𝑧 = 2 → (𝑧 = 1 ↔ 2 = 1))
1412, 13mtbiri 317 . . . . . . . . . . . 12 (𝑧 = 2 → ¬ 𝑧 = 1)
1514iffalsed 4088 . . . . . . . . . . 11 (𝑧 = 2 → if(𝑧 = 1, 2, 1) = 1)
1615adantl 482 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑧 = 2) → if(𝑧 = 1, 2, 1) = 1)
176, 8, 8, 6, 10, 16fmptpr 6423 . . . . . . . . 9 (1 ∈ V → {⟨1, 2⟩, ⟨2, 1⟩} = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
1817eqeq2d 2630 . . . . . . . 8 (1 ∈ V → (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))))
195, 18ax-mp 5 . . . . . . 7 (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
2019bicomi 214 . . . . . 6 (𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)) ↔ 𝑡 = {⟨1, 2⟩, ⟨2, 1⟩})
2120rexbii 3037 . . . . 5 (∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)) ↔ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩})
2221abbii 2737 . . . 4 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))} = {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}}
23 prex 4900 . . . . . . . 8 {1, 2} ∈ V
2423snnz 4300 . . . . . . 7 {{1, 2}} ≠ ∅
25 r19.9rzv 4056 . . . . . . . 8 ({{1, 2}} ≠ ∅ → (𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
2625bicomd 213 . . . . . . 7 ({{1, 2}} ≠ ∅ → (∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
2724, 26ax-mp 5 . . . . . 6 (∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
28 vex 3198 . . . . . . 7 𝑠 ∈ V
29 eqeq1 2624 . . . . . . . 8 (𝑡 = 𝑠 → (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
3029rexbidv 3048 . . . . . . 7 (𝑡 = 𝑠 → (∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
3128, 30elab 3344 . . . . . 6 (𝑠 ∈ {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
32 velsn 4184 . . . . . 6 (𝑠 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
3327, 31, 323bitr4i 292 . . . . 5 (𝑠 ∈ {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} ↔ 𝑠 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}})
3433eqriv 2617 . . . 4 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} = {{⟨1, 2⟩, ⟨2, 1⟩}}
3522, 34eqtri 2642 . . 3 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))} = {{⟨1, 2⟩, ⟨2, 1⟩}}
364, 35eqtri 2642 . 2 ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = {{⟨1, 2⟩, ⟨2, 1⟩}}
372, 36eqtri 2642 1 ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1481  wcel 1988  {cab 2606  wne 2791  wrex 2910  Vcvv 3195  c0 3907  ifcif 4077  {csn 4168  {cpr 4170  cop 4174  cmpt 4720  ran crn 5105  cfv 5876  1c1 9922  cn 11005  2c2 11055  pmTrspcpmtr 17842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-hash 13101  df-pmtr 17843
This theorem is referenced by:  psgnprfval2  17924
  Copyright terms: Public domain W3C validator