![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsvscaval | Structured version Visualization version GIF version |
Description: Scalar multiplication in a structure product is pointwise. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsbasmpt.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsbasmpt.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsvscaval.t | ⊢ · = ( ·𝑠 ‘𝑌) |
prdsvscaval.k | ⊢ 𝐾 = (Base‘𝑆) |
prdsvscaval.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsvscaval.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
prdsvscaval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐾) |
prdsvscaval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
prdsvscaval | ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsvscaval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
3 | prdsvscaval.r | . . . 4 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
4 | prdsvscaval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | fnex 6597 | . . . 4 ⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) | |
6 | 3, 4, 5 | syl2anc 696 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
7 | prdsbasmpt.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
8 | fndm 6103 | . . . 4 ⊢ (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼) | |
9 | 3, 8 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐼) |
10 | prdsvscaval.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
11 | prdsvscaval.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
12 | 1, 2, 6, 7, 9, 10, 11 | prdsvsca 16243 | . 2 ⊢ (𝜑 → · = (𝑦 ∈ 𝐾, 𝑧 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑦( ·𝑠 ‘(𝑅‘𝑥))(𝑧‘𝑥))))) |
13 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐹 → 𝑦 = 𝐹) | |
14 | fveq1 6303 | . . . . 5 ⊢ (𝑧 = 𝐺 → (𝑧‘𝑥) = (𝐺‘𝑥)) | |
15 | 13, 14 | oveqan12d 6784 | . . . 4 ⊢ ((𝑦 = 𝐹 ∧ 𝑧 = 𝐺) → (𝑦( ·𝑠 ‘(𝑅‘𝑥))(𝑧‘𝑥)) = (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) |
16 | 15 | adantl 473 | . . 3 ⊢ ((𝜑 ∧ (𝑦 = 𝐹 ∧ 𝑧 = 𝐺)) → (𝑦( ·𝑠 ‘(𝑅‘𝑥))(𝑧‘𝑥)) = (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) |
17 | 16 | mpteq2dv 4853 | . 2 ⊢ ((𝜑 ∧ (𝑦 = 𝐹 ∧ 𝑧 = 𝐺)) → (𝑥 ∈ 𝐼 ↦ (𝑦( ·𝑠 ‘(𝑅‘𝑥))(𝑧‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
18 | prdsvscaval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐾) | |
19 | prdsvscaval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
20 | mptexg 6600 | . . 3 ⊢ (𝐼 ∈ 𝑊 → (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ V) | |
21 | 4, 20 | syl 17 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ V) |
22 | 12, 17, 18, 19, 21 | ovmpt2d 6905 | 1 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ↦ cmpt 4837 dom cdm 5218 Fn wfn 5996 ‘cfv 6001 (class class class)co 6765 Basecbs 15980 ·𝑠 cvsca 16068 Xscprds 16229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-map 7976 df-ixp 8026 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-sup 8464 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-fz 12441 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-plusg 16077 df-mulr 16078 df-sca 16080 df-vsca 16081 df-ip 16082 df-tset 16083 df-ple 16084 df-ds 16087 df-hom 16089 df-cco 16090 df-prds 16231 |
This theorem is referenced by: prdsvscafval 16263 pwsvscafval 16277 xpsvsca 16362 prdsvscacl 19091 prdslmodd 19092 |
Copyright terms: Public domain | W3C validator |