MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval Structured version   Visualization version   GIF version

Theorem prdsdsval 16744
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsdsval.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem prdsdsval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsbasmpt.s . . 3 (𝜑𝑆𝑉)
3 prdsbasmpt.r . . . 4 (𝜑𝑅 Fn 𝐼)
4 prdsbasmpt.i . . . 4 (𝜑𝐼𝑊)
5 fnex 6973 . . . 4 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
63, 4, 5syl2anc 586 . . 3 (𝜑𝑅 ∈ V)
7 prdsbasmpt.b . . 3 𝐵 = (Base‘𝑌)
8 fndm 6448 . . . 4 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
93, 8syl 17 . . 3 (𝜑 → dom 𝑅 = 𝐼)
10 prdsdsval.d . . 3 𝐷 = (dist‘𝑌)
111, 2, 6, 7, 9, 10prdsds 16730 . 2 (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
12 fveq1 6662 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 6662 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
1412, 13oveqan12d 7168 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥)) = ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥)))
1514adantl 484 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥)) = ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥)))
1615mpteq2dv 5155 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))))
1716rneqd 5801 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))))
1817uneq1d 4131 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}))
1918supeq1d 8903 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ))
20 prdsplusgval.f . 2 (𝜑𝐹𝐵)
21 prdsplusgval.g . 2 (𝜑𝐺𝐵)
22 xrltso 12528 . . . 4 < Or ℝ*
2322supex 8920 . . 3 sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ) ∈ V
2423a1i 11 . 2 (𝜑 → sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ) ∈ V)
2511, 19, 20, 21, 24ovmpod 7295 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3491  cun 3927  {csn 4560  cmpt 5139  dom cdm 5548  ran crn 5549   Fn wfn 6343  cfv 6348  (class class class)co 7149  supcsup 8897  0cc0 10530  *cxr 10667   < clt 10668  Basecbs 16476  distcds 16567  Xscprds 16712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-plusg 16571  df-mulr 16572  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-hom 16582  df-cco 16583  df-prds 16714
This theorem is referenced by:  prdsdsval2  16750  xpsdsval  22984
  Copyright terms: Public domain W3C validator