Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prelpwi Structured version   Visualization version   GIF version

Theorem prelpwi 5064
 Description: A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.)
Assertion
Ref Expression
prelpwi ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)

Proof of Theorem prelpwi
StepHypRef Expression
1 prelpw 5063 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))
21ibi 256 1 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 2139  𝒫 cpw 4302  {cpr 4323 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-pw 4304  df-sn 4322  df-pr 4324 This theorem is referenced by:  inelfi  8489  elss2prb  13461  isdrs2  17140  usgrexmplef  26350  cusgrexilem2  26548  cusgrfilem2  26562  umgr2v2e  26631  vdegp1bi  26643  eupth2lem3lem5  27384  unelsiga  30506  unelldsys  30530  measxun2  30582  saluncl  41040  prelspr  42246  lincvalpr  42717  ldepspr  42772  zlmodzxzldeplem3  42801  zlmodzxzldep  42803  ldepsnlinc  42807
 Copyright terms: Public domain W3C validator