Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prpair Structured version   Visualization version   GIF version

Theorem prpair 43737
Description: Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.)
Hypothesis
Ref Expression
prpair.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
prpair (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
Distinct variable groups:   𝑥,𝑉   𝑉,𝑎,𝑏   𝑥,𝑋   𝑋,𝑎,𝑏
Allowed substitution hints:   𝑃(𝑥,𝑎,𝑏)

Proof of Theorem prpair
StepHypRef Expression
1 prpair.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
21eleq2i 2903 . 2 (𝑋𝑃𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
3 fveqeq2 6672 . . 3 (𝑥 = 𝑋 → ((♯‘𝑥) = 2 ↔ (♯‘𝑋) = 2))
43elrab 3676 . 2 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
5 hash2prb 13827 . . . . 5 (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏})))
6 elpwi 4541 . . . . . 6 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
7 ancom 463 . . . . . . . 8 ((𝑎𝑏𝑋 = {𝑎, 𝑏}) ↔ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
872rexbii 3247 . . . . . . 7 (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
98biimpi 218 . . . . . 6 (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) → ∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
10 ss2rexv 4029 . . . . . 6 (𝑋𝑉 → (∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
116, 9, 10syl2im 40 . . . . 5 (𝑋 ∈ 𝒫 𝑉 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
125, 11sylbid 242 . . . 4 (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1312imp 409 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
14 prelpwi 5333 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → {𝑎, 𝑏} ∈ 𝒫 𝑉)
1514adantr 483 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑉)
16 hashprg 13753 . . . . . . . . 9 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
1716biimpd 231 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 → (♯‘{𝑎, 𝑏}) = 2))
1817adantld 493 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (♯‘{𝑎, 𝑏}) = 2))
1918imp 409 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (♯‘{𝑎, 𝑏}) = 2)
20 eleq1 2899 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → (𝑋 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
21 fveqeq2 6672 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → ((♯‘𝑋) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
2220, 21anbi12d 632 . . . . . . . 8 (𝑋 = {𝑎, 𝑏} → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2322adantr 483 . . . . . . 7 ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2423adantl 484 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2515, 19, 24mpbir2and 711 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
2625ex 415 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)))
2726rexlimivv 3291 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
2813, 27impbii 211 . 2 ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
292, 4, 283bitri 299 1 (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3015  wrex 3138  {crab 3141  wss 3929  𝒫 cpw 4532  {cpr 4562  cfv 6348  2c2 11686  chash 13687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-dju 9323  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-hash 13688
This theorem is referenced by:  prproropf1olem2  43740  prproropf1olem4  43742
  Copyright terms: Public domain W3C validator