Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1o Structured version   Visualization version   GIF version

Theorem prproropf1o 43743
Description: There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1o (𝑅 Or 𝑉𝐹:𝑃1-1-onto𝑂)
Distinct variable groups:   𝑉,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1o
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
2 prproropf1o.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
31, 2prproropf1olem2 43740 . . . 4 ((𝑅 Or 𝑉𝑤𝑃) → ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩ ∈ 𝑂)
4 prproropf1o.f . . . . 5 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
5 infeq1 8933 . . . . . . 7 (𝑝 = 𝑤 → inf(𝑝, 𝑉, 𝑅) = inf(𝑤, 𝑉, 𝑅))
6 supeq1 8902 . . . . . . 7 (𝑝 = 𝑤 → sup(𝑝, 𝑉, 𝑅) = sup(𝑤, 𝑉, 𝑅))
75, 6opeq12d 4804 . . . . . 6 (𝑝 = 𝑤 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
87cbvmptv 5162 . . . . 5 (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑤𝑃 ↦ ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
94, 8eqtri 2843 . . . 4 𝐹 = (𝑤𝑃 ↦ ⟨inf(𝑤, 𝑉, 𝑅), sup(𝑤, 𝑉, 𝑅)⟩)
103, 9fmptd 6871 . . 3 (𝑅 Or 𝑉𝐹:𝑃𝑂)
11 3ancomb 1094 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) ↔ (𝑅 Or 𝑉𝑧𝑃𝑤𝑃))
12 3anass 1090 . . . . . 6 ((𝑅 Or 𝑉𝑧𝑃𝑤𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)))
1311, 12bitri 277 . . . . 5 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) ↔ (𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)))
141, 2, 4prproropf1olem4 43742 . . . . 5 ((𝑅 Or 𝑉𝑤𝑃𝑧𝑃) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
1513, 14sylbir 237 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑧𝑃𝑤𝑃)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
1615ralrimivva 3190 . . 3 (𝑅 Or 𝑉 → ∀𝑧𝑃𝑤𝑃 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
17 dff13 7006 . . 3 (𝐹:𝑃1-1𝑂 ↔ (𝐹:𝑃𝑂 ∧ ∀𝑧𝑃𝑤𝑃 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
1810, 16, 17sylanbrc 585 . 2 (𝑅 Or 𝑉𝐹:𝑃1-1𝑂)
191, 2prproropf1olem1 43739 . . . . 5 ((𝑅 Or 𝑉𝑤𝑂) → {(1st𝑤), (2nd𝑤)} ∈ 𝑃)
20 fveq2 6663 . . . . . . 7 (𝑧 = {(1st𝑤), (2nd𝑤)} → (𝐹𝑧) = (𝐹‘{(1st𝑤), (2nd𝑤)}))
2120eqeq2d 2831 . . . . . 6 (𝑧 = {(1st𝑤), (2nd𝑤)} → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)})))
2221adantl 484 . . . . 5 (((𝑅 Or 𝑉𝑤𝑂) ∧ 𝑧 = {(1st𝑤), (2nd𝑤)}) → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)})))
231, 2, 4prproropf1olem3 43741 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑂) → (𝐹‘{(1st𝑤), (2nd𝑤)}) = ⟨(1st𝑤), (2nd𝑤)⟩)
241prproropf1olem0 43738 . . . . . . . . 9 (𝑤𝑂 ↔ (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ ∧ ((1st𝑤) ∈ 𝑉 ∧ (2nd𝑤) ∈ 𝑉) ∧ (1st𝑤)𝑅(2nd𝑤)))
2524simp1bi 1140 . . . . . . . 8 (𝑤𝑂𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
2625eqcomd 2826 . . . . . . 7 (𝑤𝑂 → ⟨(1st𝑤), (2nd𝑤)⟩ = 𝑤)
2726adantl 484 . . . . . 6 ((𝑅 Or 𝑉𝑤𝑂) → ⟨(1st𝑤), (2nd𝑤)⟩ = 𝑤)
2823, 27eqtr2d 2856 . . . . 5 ((𝑅 Or 𝑉𝑤𝑂) → 𝑤 = (𝐹‘{(1st𝑤), (2nd𝑤)}))
2919, 22, 28rspcedvd 3623 . . . 4 ((𝑅 Or 𝑉𝑤𝑂) → ∃𝑧𝑃 𝑤 = (𝐹𝑧))
3029ralrimiva 3181 . . 3 (𝑅 Or 𝑉 → ∀𝑤𝑂𝑧𝑃 𝑤 = (𝐹𝑧))
31 dffo3 6861 . . 3 (𝐹:𝑃onto𝑂 ↔ (𝐹:𝑃𝑂 ∧ ∀𝑤𝑂𝑧𝑃 𝑤 = (𝐹𝑧)))
3210, 30, 31sylanbrc 585 . 2 (𝑅 Or 𝑉𝐹:𝑃onto𝑂)
33 df-f1o 6355 . 2 (𝐹:𝑃1-1-onto𝑂 ↔ (𝐹:𝑃1-1𝑂𝐹:𝑃onto𝑂))
3418, 32, 33sylanbrc 585 1 (𝑅 Or 𝑉𝐹:𝑃1-1-onto𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  wral 3137  wrex 3138  {crab 3141  cin 3928  𝒫 cpw 4532  {cpr 4562  cop 4566   class class class wbr 5059  cmpt 5139   Or wor 5466   × cxp 5546  wf 6344  1-1wf1 6345  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  1st c1st 7680  2nd c2nd 7681  supcsup 8897  infcinf 8898  2c2 11686  chash 13687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-inf 8900  df-dju 9323  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-hash 13688
This theorem is referenced by:  prproropen  43744  prproropreud  43745
  Copyright terms: Public domain W3C validator