Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem3 Structured version   Visualization version   GIF version

Theorem prproropf1olem3 43716
Description: Lemma 3 for prproropf1o 43718. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1olem3 ((𝑅 Or 𝑉𝑊𝑂) → (𝐹‘{(1st𝑊), (2nd𝑊)}) = ⟨(1st𝑊), (2nd𝑊)⟩)
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1olem3
StepHypRef Expression
1 prproropf1o.f . 2 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
2 infeq1 8940 . . . 4 (𝑝 = {(1st𝑊), (2nd𝑊)} → inf(𝑝, 𝑉, 𝑅) = inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅))
3 supeq1 8909 . . . 4 (𝑝 = {(1st𝑊), (2nd𝑊)} → sup(𝑝, 𝑉, 𝑅) = sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅))
42, 3opeq12d 4811 . . 3 (𝑝 = {(1st𝑊), (2nd𝑊)} → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩)
5 prproropf1o.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
65prproropf1olem0 43713 . . . 4 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
7 simpl 485 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → 𝑅 Or 𝑉)
8 simprll 777 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊) ∈ 𝑉)
9 simprlr 778 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (2nd𝑊) ∈ 𝑉)
10 infpr 8967 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)))
117, 8, 9, 10syl3anc 1367 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)))
12 iftrue 4473 . . . . . . . 8 ((1st𝑊)𝑅(2nd𝑊) → if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)) = (1st𝑊))
1312ad2antll 727 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → if((1st𝑊)𝑅(2nd𝑊), (1st𝑊), (2nd𝑊)) = (1st𝑊))
1411, 13eqtrd 2856 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = (1st𝑊))
15 suppr 8935 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)))
167, 8, 9, 15syl3anc 1367 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)))
17 soasym 5504 . . . . . . . . 9 ((𝑅 Or 𝑉 ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) → ((1st𝑊)𝑅(2nd𝑊) → ¬ (2nd𝑊)𝑅(1st𝑊)))
1817impr 457 . . . . . . . 8 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ¬ (2nd𝑊)𝑅(1st𝑊))
1918iffalsed 4478 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → if((2nd𝑊)𝑅(1st𝑊), (1st𝑊), (2nd𝑊)) = (2nd𝑊))
2016, 19eqtrd 2856 . . . . . 6 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅) = (2nd𝑊))
2114, 20opeq12d 4811 . . . . 5 ((𝑅 Or 𝑉 ∧ (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
22213adantr1 1165 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
236, 22sylan2b 595 . . 3 ((𝑅 Or 𝑉𝑊𝑂) → ⟨inf({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅), sup({(1st𝑊), (2nd𝑊)}, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
244, 23sylan9eqr 2878 . 2 (((𝑅 Or 𝑉𝑊𝑂) ∧ 𝑝 = {(1st𝑊), (2nd𝑊)}) → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨(1st𝑊), (2nd𝑊)⟩)
25 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
265, 25prproropf1olem1 43714 . 2 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
27 opex 5356 . . 3 ⟨(1st𝑊), (2nd𝑊)⟩ ∈ V
2827a1i 11 . 2 ((𝑅 Or 𝑉𝑊𝑂) → ⟨(1st𝑊), (2nd𝑊)⟩ ∈ V)
291, 24, 26, 28fvmptd2 6776 1 ((𝑅 Or 𝑉𝑊𝑂) → (𝐹‘{(1st𝑊), (2nd𝑊)}) = ⟨(1st𝑊), (2nd𝑊)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  cin 3935  ifcif 4467  𝒫 cpw 4539  {cpr 4569  cop 4573   class class class wbr 5066  cmpt 5146   Or wor 5473   × cxp 5553  cfv 6355  1st c1st 7687  2nd c2nd 7688  supcsup 8904  infcinf 8905  2c2 11693  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692
This theorem is referenced by:  prproropf1o  43718
  Copyright terms: Public domain W3C validator