MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdivtx Structured version   Visualization version   GIF version

Theorem pthdivtx 26681
Description: The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
pthdivtx ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼𝐽)) → (𝑃𝐼) ≠ (𝑃𝐽))

Proof of Theorem pthdivtx
StepHypRef Expression
1 ispth 26675 . . 3 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅))
2 trliswlk 26650 . . . . 5 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2651 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 26568 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))
5 elfz0lmr 12623 . . . . . . . . 9 (𝐽 ∈ (0...(#‘𝐹)) → (𝐽 = 0 ∨ 𝐽 ∈ (1..^(#‘𝐹)) ∨ 𝐽 = (#‘𝐹)))
6 elfzo1 12557 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^(#‘𝐹)) ↔ (𝐼 ∈ ℕ ∧ (#‘𝐹) ∈ ℕ ∧ 𝐼 < (#‘𝐹)))
7 nnnn0 11337 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝐹) ∈ ℕ → (#‘𝐹) ∈ ℕ0)
873ad2ant2 1103 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ ℕ ∧ (#‘𝐹) ∈ ℕ ∧ 𝐼 < (#‘𝐹)) → (#‘𝐹) ∈ ℕ0)
96, 8sylbi 207 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^(#‘𝐹)) → (#‘𝐹) ∈ ℕ0)
109adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (#‘𝐹) ∈ ℕ0)
11 fvinim0ffz 12627 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (#‘𝐹) ∈ ℕ0) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ∧ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹))))))
1210, 11sylan2 490 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ∧ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹))))))
13 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 = 0 → (𝑃𝐽) = (𝑃‘0))
1413eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 = 0 → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘0)))
1514ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘0)))
16 ffun 6086 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃)
1716adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → Fun 𝑃)
18 fdm 6089 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(#‘𝐹)))
19 fzo0ss1 12537 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1..^(#‘𝐹)) ⊆ (0..^(#‘𝐹))
20 fzossfz 12527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0..^(#‘𝐹)) ⊆ (0...(#‘𝐹))
2119, 20sstri 3645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1..^(#‘𝐹)) ⊆ (0...(#‘𝐹))
2221sseli 3632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ (0...(#‘𝐹)))
23 eleq2 2719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑃 = (0...(#‘𝐹)) → (𝐼 ∈ dom 𝑃𝐼 ∈ (0...(#‘𝐹))))
2422, 23syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (dom 𝑃 = (0...(#‘𝐹)) → (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ dom 𝑃))
2518, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ dom 𝑃))
2625imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → 𝐼 ∈ dom 𝑃)
2717, 26jca 553 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
2827adantrl 752 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
29 simprr 811 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → 𝐼 ∈ (1..^(#‘𝐹)))
30 funfvima 6532 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Fun 𝑃𝐼 ∈ dom 𝑃) → (𝐼 ∈ (1..^(#‘𝐹)) → (𝑃𝐼) ∈ (𝑃 “ (1..^(#‘𝐹)))))
3128, 29, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝑃𝐼) ∈ (𝑃 “ (1..^(#‘𝐹))))
32 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝐼) = (𝑃‘0) → ((𝑃𝐼) ∈ (𝑃 “ (1..^(#‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(#‘𝐹)))))
3331, 32syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃𝐼) = (𝑃‘0) → (𝑃‘0) ∈ (𝑃 “ (1..^(#‘𝐹)))))
3415, 33sylbid 230 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → (𝑃‘0) ∈ (𝑃 “ (1..^(#‘𝐹)))))
35 nnel 2935 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(#‘𝐹))))
3634, 35syl6ibr 242 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → ¬ (𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹)))))
3736necon2ad 2838 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
3837adantrd 483 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ∧ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹)))) → (𝑃𝐼) ≠ (𝑃𝐽)))
3912, 38sylbid 230 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽)))
4039ex 449 . . . . . . . . . . . . . . . 16 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽))))
4140com23 86 . . . . . . . . . . . . . . 15 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽))))
4241a1d 25 . . . . . . . . . . . . . 14 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))))
43423imp 1275 . . . . . . . . . . . . 13 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
4443com12 32 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
4544a1d 25 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
4645ex 449 . . . . . . . . . 10 (𝐽 = 0 → (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
47 fvres 6245 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^(#‘𝐹)) → ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = (𝑃𝐼))
4847adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = (𝑃𝐼))
4948adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = (𝑃𝐼))
5049eqcomd 2657 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝑃𝐼) = ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼))
51 fvres 6245 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (1..^(#‘𝐹)) → ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽) = (𝑃𝐽))
5251ad2antrl 764 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽) = (𝑃𝐽))
5352eqcomd 2657 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝑃𝐽) = ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽))
5450, 53eqeq12d 2666 . . . . . . . . . . . . . . . 16 (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽)))
55 fssres 6108 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (1..^(#‘𝐹)) ⊆ (0...(#‘𝐹))) → (𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))⟶(Vtx‘𝐺))
5621, 55mpan2 707 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))⟶(Vtx‘𝐺))
57 df-f1 5931 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))–1-1→(Vtx‘𝐺) ↔ ((𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹)))))
5857biimpri 218 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹)))) → (𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))–1-1→(Vtx‘𝐺))
5956, 58sylan 487 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹)))) → (𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))–1-1→(Vtx‘𝐺))
60593adant3 1101 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))–1-1→(Vtx‘𝐺))
61 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))))
6261ancomd 466 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (1..^(#‘𝐹))))
63 f1veqaeq 6554 . . . . . . . . . . . . . . . . 17 (((𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))–1-1→(Vtx‘𝐺) ∧ (𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (1..^(#‘𝐹)))) → (((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽) → 𝐼 = 𝐽))
6460, 62, 63syl2an2r 893 . . . . . . . . . . . . . . . 16 (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽) → 𝐼 = 𝐽))
6554, 64sylbid 230 . . . . . . . . . . . . . . 15 (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → 𝐼 = 𝐽))
6665ancoms 468 . . . . . . . . . . . . . 14 (((𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))) ∧ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)) → ((𝑃𝐼) = (𝑃𝐽) → 𝐼 = 𝐽))
6766necon3d 2844 . . . . . . . . . . . . 13 (((𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))) ∧ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)) → (𝐼𝐽 → (𝑃𝐼) ≠ (𝑃𝐽)))
6867ex 449 . . . . . . . . . . . 12 ((𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝐼𝐽 → (𝑃𝐼) ≠ (𝑃𝐽))))
6968com23 86 . . . . . . . . . . 11 ((𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
7069ex 449 . . . . . . . . . 10 (𝐽 ∈ (1..^(#‘𝐹)) → (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
719adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (#‘𝐹) ∈ ℕ0)
7271, 11sylan2 490 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ∧ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹))))))
73 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 = (#‘𝐹) → (𝑃𝐽) = (𝑃‘(#‘𝐹)))
7473eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 = (#‘𝐹) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘(#‘𝐹))))
7574ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘(#‘𝐹))))
7627adantrl 752 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
77 simprr 811 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → 𝐼 ∈ (1..^(#‘𝐹)))
7876, 77, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝑃𝐼) ∈ (𝑃 “ (1..^(#‘𝐹))))
79 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝐼) = (𝑃‘(#‘𝐹)) → ((𝑃𝐼) ∈ (𝑃 “ (1..^(#‘𝐹))) ↔ (𝑃‘(#‘𝐹)) ∈ (𝑃 “ (1..^(#‘𝐹)))))
8078, 79syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃𝐼) = (𝑃‘(#‘𝐹)) → (𝑃‘(#‘𝐹)) ∈ (𝑃 “ (1..^(#‘𝐹)))))
8175, 80sylbid 230 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → (𝑃‘(#‘𝐹)) ∈ (𝑃 “ (1..^(#‘𝐹)))))
82 nnel 2935 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹))) ↔ (𝑃‘(#‘𝐹)) ∈ (𝑃 “ (1..^(#‘𝐹))))
8381, 82syl6ibr 242 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → ¬ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹)))))
8483necon2ad 2838 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
8584adantld 482 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ∧ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹)))) → (𝑃𝐼) ≠ (𝑃𝐽)))
8672, 85sylbid 230 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽)))
8786ex 449 . . . . . . . . . . . . . . . 16 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽))))
8887com23 86 . . . . . . . . . . . . . . 15 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽))))
8988a1d 25 . . . . . . . . . . . . . 14 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))))
90893imp 1275 . . . . . . . . . . . . 13 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
9190com12 32 . . . . . . . . . . . 12 ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
9291a1d 25 . . . . . . . . . . 11 ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
9392ex 449 . . . . . . . . . 10 (𝐽 = (#‘𝐹) → (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
9446, 70, 933jaoi 1431 . . . . . . . . 9 ((𝐽 = 0 ∨ 𝐽 ∈ (1..^(#‘𝐹)) ∨ 𝐽 = (#‘𝐹)) → (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
955, 94syl 17 . . . . . . . 8 (𝐽 ∈ (0...(#‘𝐹)) → (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
96953imp21 1298 . . . . . . 7 ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼𝐽) → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
9796com12 32 . . . . . 6 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
98973exp 1283 . . . . 5 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))))
992, 4, 983syl 18 . . . 4 (𝐹(Trails‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))))
100993imp 1275 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
1011, 100sylbi 207 . 2 (𝐹(Paths‘𝐺)𝑃 → ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
102101imp 444 1 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼𝐽)) → (𝑃𝐼) ≠ (𝑃𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1053  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wnel 2926  cin 3606  wss 3607  c0 3948  {cpr 4212   class class class wbr 4685  ccnv 5142  dom cdm 5143  cres 5145  cima 5146  Fun wfun 5920  wf 5922  1-1wf1 5923  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   < clt 10112  cn 11058  0cn0 11330  ...cfz 12364  ..^cfzo 12504  #chash 13157  Vtxcvtx 25919  Walkscwlks 26548  Trailsctrls 26643  Pathscpths 26664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-wlks 26551  df-trls 26645  df-pths 26668
This theorem is referenced by:  pthdadjvtx  26682  upgr4cycl4dv4e  27163
  Copyright terms: Public domain W3C validator