![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabdiophlem1 | Structured version Visualization version GIF version |
Description: Lemma for arithmetic diophantine sets. Convert polynomial-ness of an expression into a constraint suitable for ralimi 2981. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
Ref | Expression |
---|---|
rabdiophlem1 | ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 11424 | . . 3 ⊢ ℤ ∈ V | |
2 | nn0ssz 11436 | . . 3 ⊢ ℕ0 ⊆ ℤ | |
3 | mapss 7942 | . . 3 ⊢ ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0 ↑𝑚 (1...𝑁)) ⊆ (ℤ ↑𝑚 (1...𝑁))) | |
4 | 1, 2, 3 | mp2an 708 | . 2 ⊢ (ℕ0 ↑𝑚 (1...𝑁)) ⊆ (ℤ ↑𝑚 (1...𝑁)) |
5 | mzpf 37616 | . . 3 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ) | |
6 | eqid 2651 | . . . 4 ⊢ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) = (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) | |
7 | 6 | fmpt 6421 | . . 3 ⊢ (∀𝑡 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ ↔ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ) |
8 | 5, 7 | sylibr 224 | . 2 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) |
9 | ssralv 3699 | . 2 ⊢ ((ℕ0 ↑𝑚 (1...𝑁)) ⊆ (ℤ ↑𝑚 (1...𝑁)) → (∀𝑡 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ)) | |
10 | 4, 8, 9 | mpsyl 68 | 1 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ⊆ wss 3607 ↦ cmpt 4762 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 1c1 9975 ℕ0cn0 11330 ℤcz 11415 ...cfz 12364 mzPolycmzp 37602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-mzpcl 37603 df-mzp 37604 |
This theorem is referenced by: lerabdioph 37686 eluzrabdioph 37687 ltrabdioph 37689 nerabdioph 37690 dvdsrabdioph 37691 |
Copyright terms: Public domain | W3C validator |