Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc Structured version   Visualization version   GIF version

Theorem rdgprc 33039
Description: The value of the recursive definition generator when 𝐼 is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))

Proof of Theorem rdgprc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6670 . . . . . . 7 (𝑧 = ∅ → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘∅))
2 fveq2 6670 . . . . . . 7 (𝑧 = ∅ → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘∅))
31, 2eqeq12d 2837 . . . . . 6 (𝑧 = ∅ → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅)))
43imbi2d 343 . . . . 5 (𝑧 = ∅ → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅))))
5 fveq2 6670 . . . . . . 7 (𝑧 = 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑦))
6 fveq2 6670 . . . . . . 7 (𝑧 = 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑦))
75, 6eqeq12d 2837 . . . . . 6 (𝑧 = 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
87imbi2d 343 . . . . 5 (𝑧 = 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))))
9 fveq2 6670 . . . . . . 7 (𝑧 = suc 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘suc 𝑦))
10 fveq2 6670 . . . . . . 7 (𝑧 = suc 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘suc 𝑦))
119, 10eqeq12d 2837 . . . . . 6 (𝑧 = suc 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))
1211imbi2d 343 . . . . 5 (𝑧 = suc 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))))
13 fveq2 6670 . . . . . . 7 (𝑧 = 𝑥 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑥))
14 fveq2 6670 . . . . . . 7 (𝑧 = 𝑥 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑥))
1513, 14eqeq12d 2837 . . . . . 6 (𝑧 = 𝑥 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
1615imbi2d 343 . . . . 5 (𝑧 = 𝑥 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))))
17 rdgprc0 33038 . . . . . 6 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)
18 0ex 5211 . . . . . . 7 ∅ ∈ V
1918rdg0 8057 . . . . . 6 (rec(𝐹, ∅)‘∅) = ∅
2017, 19syl6eqr 2874 . . . . 5 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅))
21 fveq2 6670 . . . . . . 7 ((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦)))
22 rdgsuc 8060 . . . . . . . 8 (𝑦 ∈ On → (rec(𝐹, 𝐼)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
23 rdgsuc 8060 . . . . . . . 8 (𝑦 ∈ On → (rec(𝐹, ∅)‘suc 𝑦) = (𝐹‘(rec(𝐹, ∅)‘𝑦)))
2422, 23eqeq12d 2837 . . . . . . 7 (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦) ↔ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦))))
2521, 24syl5ibr 248 . . . . . 6 (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))
2625imim2d 57 . . . . 5 (𝑦 ∈ On → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))))
27 r19.21v 3175 . . . . . 6 (∀𝑦𝑧𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) ↔ (¬ 𝐼 ∈ V → ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
28 limord 6250 . . . . . . . . 9 (Lim 𝑧 → Ord 𝑧)
29 ordsson 7504 . . . . . . . . 9 (Ord 𝑧𝑧 ⊆ On)
30 rdgfnon 8054 . . . . . . . . . 10 rec(𝐹, 𝐼) Fn On
31 rdgfnon 8054 . . . . . . . . . 10 rec(𝐹, ∅) Fn On
32 fvreseq 6810 . . . . . . . . . 10 (((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) ∧ 𝑧 ⊆ On) → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
3330, 31, 32mpanl12 700 . . . . . . . . 9 (𝑧 ⊆ On → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
3428, 29, 333syl 18 . . . . . . . 8 (Lim 𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
35 rneq 5806 . . . . . . . . . . 11 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → ran (rec(𝐹, 𝐼) ↾ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧))
36 df-ima 5568 . . . . . . . . . . 11 (rec(𝐹, 𝐼) “ 𝑧) = ran (rec(𝐹, 𝐼) ↾ 𝑧)
37 df-ima 5568 . . . . . . . . . . 11 (rec(𝐹, ∅) “ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧)
3835, 36, 373eqtr4g 2881 . . . . . . . . . 10 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧))
3938unieqd 4852 . . . . . . . . 9 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧))
40 vex 3497 . . . . . . . . . 10 𝑧 ∈ V
41 rdglim 8062 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼) “ 𝑧))
42 rdglim 8062 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅) “ 𝑧))
4341, 42eqeq12d 2837 . . . . . . . . . 10 ((𝑧 ∈ V ∧ Lim 𝑧) → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧)))
4440, 43mpan 688 . . . . . . . . 9 (Lim 𝑧 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧)))
4539, 44syl5ibr 248 . . . . . . . 8 (Lim 𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))
4634, 45sylbird 262 . . . . . . 7 (Lim 𝑧 → (∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))
4746imim2d 57 . . . . . 6 (Lim 𝑧 → ((¬ 𝐼 ∈ V → ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))))
4827, 47syl5bi 244 . . . . 5 (Lim 𝑧 → (∀𝑦𝑧𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))))
494, 8, 12, 16, 20, 26, 48tfinds 7574 . . . 4 (𝑥 ∈ On → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5049com12 32 . . 3 𝐼 ∈ V → (𝑥 ∈ On → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5150ralrimiv 3181 . 2 𝐼 ∈ V → ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))
52 eqfnfv 6802 . . 3 ((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) → (rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5330, 31, 52mp2an 690 . 2 (rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))
5451, 53sylibr 236 1 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  wss 3936  c0 4291   cuni 4838  ran crn 5556  cres 5557  cima 5558  Ord word 6190  Oncon0 6191  Lim wlim 6192  suc csuc 6193   Fn wfn 6350  cfv 6355  reccrdg 8045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046
This theorem is referenced by:  dfrdg3  33041
  Copyright terms: Public domain W3C validator